RESUMO
BACKGROUND: Follicular helper T (TFH) cells support terminal B-cell differentiation. Human regulatory B (Breg) cells modulate cellular responses, but their control of TFH cell-dependent humoral immune responses is unknown. OBJECTIVE: We sought to assess the role of Breg cells on TFH cell development and function. METHODS: Human T cells were polyclonally stimulated in the presence of IL-12 and IL-21 to generate TFH cells. They were cocultured with B cells to induce their terminal differentiation. Breg cells were included in these cultures, and their effects were evaluated by using flow cytometry and ELISA. RESULTS: B-cell lymphoma 6, IL-21, inducible costimulator, CXCR5, and programmed cell death protein 1 (PD-1) expressions increased on stimulated human T cells, characterizing TFH cell maturation. In cocultures they differentiated B cells into CD138+ plasma and IgD-CD27+ memory cells and triggered immunoglobulin secretions. Breg cells obtained by Toll-like receptor 9 and CD40 activation of B cells prevented TFH cell development. Added to TFH cell and B-cell cocultures, they inhibited B-cell differentiation, impeded immunoglobulin secretions, and expanded Foxp3+CXCR5+PD-1+ follicular regulatory T cells. Breg cells modulated IL-21 receptor expressions on TFH cells and B cells, and their suppressive activities involved CD40, CD80, CD86, and intercellular adhesion molecule interactions and required production of IL-10 and TGF-ß. CONCLUSION: Human Breg cells control TFH cell maturation, expand follicular regulatory T cells, and inhibit the TFH cell-mediated antibody secretion. These novel observations demonstrate a role for the Breg cell in germinal center reactions and suggest that deficient activities might impair the TFH cell-dependent control of humoral immunity and might lead to the development of aberrant autoimmune responses.
Assuntos
Linfócitos B Reguladores/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos B Reguladores/fisiologia , Diferenciação Celular , Células Cultivadas , Técnicas de Cocultura , Humanos , Interleucina-12/imunologia , Interleucinas/imunologia , Linfócitos T Auxiliares-Indutores/fisiologiaRESUMO
High-grade osteosarcoma is the most common paediatric bone cancer. More than one third of patients relapse and die of osteosarcoma using current chemotherapeutic and surgical strategies. To improve outcomes in osteosarcoma, two crucial challenges need to be tackled: 1-the identification of hard-to-treat disease, ideally from diagnosis; 2- choosing the best combined or novel therapies to eradicate tumor cells which are resistant to current therapies leading to disease dissemination and metastasize as well as their favorable microenvironment. Genetic chaos, tumor complexity and heterogeneity render this task difficult. The development of new technologies like next generation sequencing has led to an improvement in osteosarcoma oncogenesis knownledge. This review summarizes recent biological and therapeutical advances in osteosarcoma, as well as the challenges that must be overcome in order to develop personalized medicine and new therapeutic strategies and ultimately improve patient survival.
Assuntos
Neoplasias Ósseas , Osteossarcoma , Medicina de Precisão , Osteossarcoma/genética , Osteossarcoma/patologia , Humanos , Medicina de Precisão/métodos , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/terapiaRESUMO
The capacity of pre-existing immunity to human common coronaviruses (HCoV) to cross-protect against de novo COVID-19is yet unknown. In this work, we studied the sera of 175 COVID-19 patients, 76 healthy donors and 3 intravenous immunoglobulins (IVIG) batches. We found that most COVID-19 patients developed anti-SARS-CoV-2 IgG antibodies before IgM. Moreover, the capacity of their IgGs to react to beta-HCoV, was present in the early sera of most patients before the appearance of anti-SARS-CoV-2 IgG. This implied that a recall-type antibody response was generated. In comparison, the patients that mounted an anti-SARS-COV2 IgM response, prior to IgG responses had lower titres of anti-beta-HCoV IgG antibodies. This indicated that pre-existing immunity to beta-HCoV was conducive to the generation of memory type responses to SARS-COV-2. Finally, we also found that pre-COVID-19-era sera and IVIG cross-reacted with SARS-CoV-2 antigens without neutralising SARS-CoV-2 infectivity in vitro. Put together, these results indicate that whilst pre-existing immunity to HCoV is responsible for recall-type IgG responses to SARS-CoV-2, it does not lead to cross-protection against COVID-19.
Assuntos
Betacoronavirus/fisiologia , COVID-19/imunologia , Resfriado Comum/imunologia , Imunoglobulinas Intravenosas/uso terapêutico , SARS-CoV-2/fisiologia , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Antígenos Virais/imunologia , COVID-19/mortalidade , COVID-19/terapia , Reações Cruzadas , Feminino , Humanos , Imunidade Heteróloga , Imunoglobulina G/metabolismo , Imunoglobulina M/metabolismo , Memória Imunológica , Masculino , Pessoa de Meia-Idade , Análise de SobrevidaRESUMO
CONTEXT: Osteosarcoma is the most common primary solid malignancy of the bone, mainly affecting pediatric patients. The main clinical issues are chemoresistance and metastatic spread, leading to a survival rate stagnating around 60% for four decades. PURPOSE: Here, we investigated the effect of simvastatin as adjuvant therapy on chemotherapy. METHODS: Cell viability was assessed by the MTT test, and a combination index was evaluated by an isobologram approach. Cell motility was assessed by wound-healing assay. Cell-derived xenograft models were established in mice. FFPE tumor samples were assessed by immunohistochemistry. RESULTS: In vitro experiments indicate that simvastatin synergized the conventional chemotherapy drugs' inhibitory effect on cell viability. Functional assays reveal that simvastatin supplementation favored the anticancer mechanism of action of the tested chemotherapy drugs, such as DNA damage through intercalation or direct alkylation and disorganization of microtubules. Additionally, we show that even though simvastatin alone did not modify tumor behavior, it potentiated the inhibitory effect of doxorubicin on primary tumor growth (+50%, p < 0.05) and metastatic spread (+50%, p < 0.05). Our results provide evidence that simvastatin exerted an anti-tumor effect combined with chemotherapy in the preclinical murine model and represents valuable alternative adjuvant therapy that needs further investigation in clinical trials.
RESUMO
Humoral immune responses are typically characterized by primary IgM antibody responses followed by secondary antibody responses associated with immune memory and composed of IgG, IgA, and IgE. Here, we measured acute humoral responses to SARS-CoV-2, including the frequency of antibody-secreting cells and the presence of SARS-CoV-2-specific neutralizing antibodies in the serum, saliva, and bronchoalveolar fluid of 159 patients with COVID-19. Early SARS-CoV-2-specific humoral responses were dominated by IgA antibodies. Peripheral expansion of IgA plasmablasts with mucosal homing potential was detected shortly after the onset of symptoms and peaked during the third week of the disease. The virus-specific antibody responses included IgG, IgM, and IgA, but IgA contributed to virus neutralization to a greater extent compared with IgG. Specific IgA serum concentrations decreased notably 1 month after the onset of symptoms, but neutralizing IgA remained detectable in saliva for a longer time (days 49 to 73 post-symptoms). These results represent a critical observation given the emerging information as to the types of antibodies associated with optimal protection against reinfection and whether vaccine regimens should consider targeting a potent but potentially short-lived IgA response.
Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/diagnóstico , Imunidade Humoral , Imunoglobulina A/sangue , SARS-CoV-2/imunologia , Biomarcadores/sangue , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/virologia , COVID-19/sangue , COVID-19/imunologia , COVID-19/virologia , Estudos de Casos e Controles , Interações Hospedeiro-Patógeno , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Estudos Longitudinais , Saliva/imunologia , Saliva/virologia , Fatores de TempoRESUMO
Regulatory T (Treg) cells expressing the FOXP3 transcription factor are presently under investigation by many teams globally as a cellular therapy to induce tolerance in transplantation. This is primarily due to their immunosuppressive and homeostatic functions. Depending on the type of allograft, Treg cells will need to infiltrate and function in metabolically diverse microenvironments. This means that any resident and circulating Treg cells need to differentially adapt to counter acute or chronic allograft rejection. However, the links between Treg cell metabolism and function are still not entirely delineated. Current data suggest that Treg cells and their effector counterparts have different metabolite dependencies and metabolic programs. These properties could be exploited to optimize intragraft Treg cell function. In this review, we discuss the current paradigms regarding Treg cell metabolism and outline critical intracellular axes that link metabolism and function. Finally, we discuss how this knowledge could be clinically translated for the benefit of transplant patients.
Assuntos
Metabolismo Energético , Imunomodulação , Transplante de Órgãos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Biomarcadores , Humanos , Redes e Vias Metabólicas , Especificidade de Órgãos , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Imunologia de TransplantesRESUMO
Background: Hashimoto's thyroiditis (HT) and Graves' disease (GD) are autoimmune thyroid disorders (AITDs). These conditions have been associated to abnormalities in circulating regulatory T cells (Tregs). We postulated that immune perturbations could be more pronounced at the thyroid tissue level. Methods: The phenotype of PBMCs and immune cells infiltrating thyroid tissue from 19 patients with HT, 21 patients with GD, and 30 controls has been analyzed by flow cytometry. Results: We report that blood and thyroid Treg cell subsets are similarly represented in all AITDs patients and controls. Increased Lymphoid tissue inducer (LTi)-like ILC3 and CXCR5+ PD-1hi CD4+ T follicular helper cells (Tfh) tissue-infiltrating cells, together with the prevalence of tertiary lymphoid structures (TLS) and germinal centers (GCs) represented a typical immune signature in all HT and 60% of GD patients. In the remaining group of GD patients, the absence of the aforementioned abnormalities was associated with a higher prevalence of ophthalmopathy. Conclusion: Tissue infiltrating Lymphoid Tissue inducer-like group 3 Innate Lymphoid cells and T follicular helper cells are increased in most thyroid autoimmune disease.
Assuntos
Doença de Graves/imunologia , Doença de Hashimoto/imunologia , Imunidade Inata , Linfócitos/imunologia , Tecido Linfoide/imunologia , Células T Auxiliares Foliculares/imunologia , Adulto , Feminino , Citometria de Fluxo , Fatores de Transcrição Forkhead/análise , Humanos , Masculino , Pessoa de Meia-Idade , Receptores CXCR5/análise , Linfócitos T Reguladores/imunologiaRESUMO
Chronic lymphocytic leukemia (CLL) is associated with abnormal T-cell responses responsible for defective anti-tumor activities. Intriguingly, CLL B cells share phenotypical characteristics with regulatory B (Breg) cells suggesting that they might negatively control the T-cell activation and immune responses. We elaborated an in vitro co-culture system with T cells to evaluate the Breg capacities of CLL B cells following innate Toll-like receptor 9 (TLR9) engagement. We demonstrated that B cells from half of the patients exhibited regulatory capacities, whilst B cells from the remaining patients were unable to develop a Breg function. The T cell sensitivities of all patients were normal suggesting that defective Breg activities were due to intrinsic CLL B cell deficiencies. Thus, TLR-dedicated gene assays highlighted differential signature of the TLR9 negative regulation pathway between the two groups of patients. Furthermore, correlations of the doubling time of lymphocytosis, the time to first treatment, the mutational status of IgVH and the Breg functions indicate that patients with efficient Breg activities have more aggressive CLL than patients with defective Breg cells. Our in vitro observations may open new approaches for adjusting therapeutic strategies targeting the Breg along with the evolution of the disease.
RESUMO
FOXP3-expressing CD4+ T regulatory (Treg) cells are instrumental for the maintenance of self-tolerance. They are also involved in the prevention of allergy, allograft rejection, foetal rejection during pregnancy and of exaggerated immune response towards commensal pathogens in mucosal tissues. They can also prevent immune responses against tumors and promote tumor progression. FOXP3-expressing Treg cells are not a homogenous population. The different subsets of Treg cells can have different functions or roles in the maintenance of immune homeostasis and can therefore be differentially targeted in the management of autoimmune diseases or in cancer. We discuss here how Treg cell subsets can be differentiated phenotypically, functionally and developmentally in humans.
RESUMO
The anti-CD20-specific monoclonal antibody rituximab (RTX), in combination with chemotherapy, is commonly used for primary treatment in chronic lymphocytic leukemia (CLL). However, relapses remain important and activation of the complement pathway is one of the mechanisms by which RTX generates the destruction of B cells directly by complement-dependent cytotoxicity (CDC), or indirectly by antibody-dependent cellular phagocytosis. In this study, the RTX capacity to induce CDC was established in 69 untreated CLL patients, this cohort including 34 patients tested before the initiation of RTX-chemotherapy. In vitro CDC-resistance to RTX predicts lower response rates to RTX-chemotherapy and shorter treatment free survival. Furthermore, the predictive value of CDC-resistance was independent from the clinical, cytogenetic and FcγR3A V158F polymorphism status. In contrast, CLL cell resistance to CDC predominates in IGHV unmutated patients and was related to an important α2-6 sialyl transferase activity, which in turn increases cell surface α2-6 hypersialylation. Suspected factors associated with resistance to CDC (CD20, CD55, CD59, factor H, GM1, and sphingomyelin) were not differentially expressed or recruited between the two CLL groups. Altogether, results provide evidence that testing RTX capacity to induce CDC in vitro represents an independent predictive factor of therapeutic effects of RTX, and that α2-6 hypersialylation in CLL cells controls RTX response through the control of the complement pathway. At a time when CLL therapy is moving towards chemo-free treatments, further experiments are required to determine whether performing an initial in vitro assay to appreciate CLL CDC resistance might be useful to select patients.
RESUMO
Cytosine derivative dysregulations represent important epigenetic modifications whose impact on the clinical outcome in chronic lymphocytic leukemia (CLL) is incompletely understood. Hence, global levels of 5-methylcytosine (5-mCyt), 5-hydroxymethylcytosine (5-hmCyt), 5-carboxylcytosine (5-CaCyt) and 5-hydroxymethyluracil were tested in purified B cells from CLL patients (n = 55) and controls (n = 17). The DNA methylation 'writers' (DNA methyltransferases [DNMT1/3A/3B]), 'readers' (methyl-CpG-binding domain [MBD2/4]), 'editors' (ten-eleven translocation [TET1/2/3]) and 'modulators' (SAT1) were also evaluated. Accordingly, patients were stratified into three subgroups. First, a subgroup with a global deficit in cytosine derivatives characterized by hyperlymphocytosis, reduced median progression free survival (PFS = 52 months) and shorter treatment free survival (TFS = 112 months) was identified. In this subgroup, major epigenetic modifications were highlighted including a reduction of 5-mCyt, 5-hmCyt, 5-CaCyt associated with DNMT3A, MBD2/4 and TET1/2 downregulation. Second, the cytosine derivative analysis revealed a subgroup with a partial deficit (PFS = 84, TFS = 120 months), mainly affecting DNA demethylation (5-hmCyt reduction, SAT1 induction). Third, a subgroup epigenetically similar to controls was identified (PFS and TFS > 120 months). The prognostic impact of stratifying CLL patients within three epigenetic subgroups was confirmed in a validation cohort. In conclusion, our results suggest that dysregulations of cytosine derivative regulators represent major events acquired during CLL progression and are independent from IGHV mutational status.
RESUMO
Chronic lymphocytic leukemia (CLL) is characterized by an abnormal expansion of mature B cells in the bone marrow and their accumulation in blood and secondary lymphoid organs. Tumor CLL cells share expression of various surface molecules with many subsets of B cells and have several common characteristics with regulatory B cells (B regs). However, the identification of B regs and their role in CLL remain elusive. The aim of this review is to summarize recent works regarding the regulatory and phenotypic characteristic of B regs and their associated effects on the immune system. It is also meant to highlight their potential importance with regards to the immunotherapeutic response.