Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Exp Eye Res ; 241: 109858, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467176

RESUMO

The eye lens is responsible for focusing objects at various distances onto the retina and its refractive power is determined by its surface curvature as well as its internal gradient refractive index (GRIN). The lens continues to grow with age resulting in changes to the shape and to the GRIN profile. The present study aims to investigate how the ageing process may influence lens optical development. Murine lenses of accelerated senescence-prone strain (SAMP8) aged from 4 to 50 weeks; senescence-resistant strain (SAMR1) aged from 5 to 52 weeks as well as AKR strain (served as control) aged from 6 to 70 weeks were measured using the X-ray interferometer at the SPring-8 synchrotron Japan within three consecutive years from 2020 to 2022. Three dimensional distributions of the lens GRIN were reconstructed using the measured data and the lens shapes were determined using image segmentation in MatLab. Variations in the parameters describing the lens shape and the GRIN profile with age were compared amongst three mouse strains. With advancing age, both the lens anterior and posterior surface flattens and the lens sagittal thickness increase in all three mouse strains (Anterior radius of curvature increase at 0.008 mm/week, 0.007 mm/week and 0.002 mm/week while posterior radius of curvature increase at 0.002 mm/week, 0.007 mm/week and 0.003 mm/week respectively in AKR, SAMP8 and SAMR1 lenses). Compared with the AKR strain, the SAMP8 samples demonstrate a higher rate of increase in the posterior curvature radius (0.007 mm/week) and the thickness (0.015 mm/week), whilst the SAMR1 samples show slower increases in the anterior curvature radius (0.002 mm/week) and its thickness (0.013 mm/week). There are similar age-related trends in GRIN shape in the radial direction (in all three types of murine lenses nr2 and nr6 increase with age while nr4 decrease with age consistently) but not in the axial direction amongst three mouse strains (nz1 of AKR lens decrease while of SAMP8 and SAMR1 increase with age; nz2 of all three models increase with age; nz3 of AKR lens increase while of SAMP8 and SAMR1 decrease with age). The ageing process can influence the speed of lens shape change and affect the GRIN profile mainly in the axial direction, contributing to an accelerated decline rate of the optical power in the senescence-prone strain (3.5 D/week compared to 2.3 D/week in the AKR control model) but a retardatory decrease in the senescence-resistant strain (2.1 D/week compared to the 2.3D/week in the AKR control model).


Assuntos
Envelhecimento , Cristalino , Camundongos , Animais , Japão
2.
Circ J ; 83(2): 368-378, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30487376

RESUMO

BACKGROUND: The rapid increase in the number of heart failure (HF) patients in parallel with the increase in the number of older people is receiving attention worldwide. HF not only increases mortality but decreases quality of life, creating medical and social problems. Thus, it is necessary to define molecular mechanisms underlying HF development and progression. HMGB2 is a member of the high-mobility group superfamily characterized as nuclear proteins that bind DNA to stabilize nucleosomes and promote transcription. A recent in vitro study revealed that HMGB2 loss in cardiomyocytes causes hypertrophy and increases HF-associated gene expression. However, it's in vivo function in the heart has not been assessed. Methods and Results: Western blotting analysis revealed increased HMGB2 expression in heart tissues undergoing pressure overload by transverse aorta constriction (TAC) in mice. Hmgb2 homozygous knockout (Hmgb2-/-) mice showed cardiac dysfunction due to AKT inactivation and decreased sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2a activity. Compared to wild-type mice, Hmgb2-/- mice had worsened cardiac dysfunction after TAC surgery, predisposing mice to HF development and progression. CONCLUSIONS: This study demonstrates that upregulation of cardiac HMGB2 is an adaptive response to cardiac stress, and that loss of this response could accelerate cardiac dysfunction, suggesting that HMGB2 plays a cardioprotective role.


Assuntos
Proteína HMGB2/análise , Insuficiência Cardíaca/etiologia , Animais , Western Blotting , Cardiotônicos/análise , Cardiotônicos/farmacologia , Constrição Patológica/complicações , Proteína HMGB2/genética , Proteína HMGB2/farmacologia , Insuficiência Cardíaca/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
3.
Can J Physiol Pharmacol ; 95(2): 190-198, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27906545

RESUMO

Varying temperature affects cardiac systolic and diastolic function and the left ventricular (LV) pressure-time curve (PTC) waveform that includes information about LV inotropism and lusitropism. Our proposed half-logistic (h-L) time constants obtained by fitting using h-L functions for four segmental phases (Phases I-IV) in the isovolumic LV PTC are more useful indices for estimating LV inotropism and lusitropism during contraction and relaxation periods than the mono-exponential (m-E) time constants at normal temperature. In this study, we investigated whether the superiority of the goodness of h-L fits remained even at hypothermia and hyperthermia. Phases I-IV in the isovolumic LV PTCs in eight excised, cross-circulated canine hearts at 33, 36, and 38 °C were analyzed using h-L and m-E functions and the least-squares method. The h-L and m-E time constants for Phases I-IV significantly shortened with increasing temperature. Curve fitting using h-L functions was significantly better than that using m-E functions for Phases I-IV at all temperatures. Therefore, the superiority of the goodness of h-L fit vs. m-E fit remained at all temperatures. As LV inotropic and lusitropic indices, temperature-dependent h-L time constants could be more useful than m-E time constants for Phases I-IV.


Assuntos
Febre/fisiopatologia , Coração/fisiologia , Hipotermia/fisiopatologia , Contração Miocárdica/fisiologia , Função Ventricular Esquerda/fisiologia , Animais , Circulação Cruzada , Cães , Modelos Logísticos
4.
Biochem Biophys Res Commun ; 480(4): 564-569, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27789286

RESUMO

The Na+/Ca2+ exchanger 1 (NCX1) is an essential Ca2+ efflux system in cardiomyocytes. Although NCX1 is distributed throughout the sarcolemma, a subpopulation of NCX1 is localized to transverse (T)-tubules. There is growing evidence that T-tubule disorganization is a causal event that shifts the transition from hypertrophy to heart failure (HF). However, the detailed molecular mechanisms have not been clarified. Previously, we showed that induced NCX1 expression in pressure-overloaded hearts attenuates defective excitation-contraction coupling and HF progression. Here, we examined the effects of induced NCX1 overexpression on the spatial distribution of L-type Ca2+ channels (LTCCs) and junctophilin-2 (JP2), a structural protein that connects the T-tubule and sarcoplasmic reticulum membrane, in pressure-overloaded hearts. Quantitative analysis showed that the regularity of NCX1 localization was significantly decreased at 8 weeks after transverse aortic constriction (TAC)-surgery; however, T-tubule organization and the regularities of LTCC and JP2 immunofluorescent signals were maintained at this time point. These observations demonstrated that release of NCX1 from the T-tubule area occurred before the onset of T-tubule disorganization and LTCC and JP2 mislocalization. Moreover, induced NCX1 overexpression at 8 weeks post-TAC not only recovered NCX1 regularity but also prevented the decrease in LTCC and JP2 regularities at 16 weeks post-TAC. These results suggested that NCX1 may play an important role in the proper spatial distribution of LTCC and JP2 in T-tubules in the context of pressure-overloading.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Ventrículos do Coração/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Proteínas de Membrana/metabolismo , Microtúbulos/metabolismo , Proteínas Musculares/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Masculino , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos , Especificidade de Órgãos , Distribuição Tecidual , Regulação para Cima
5.
Sensors (Basel) ; 15(4): 7898-912, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25835300

RESUMO

The liquid junction potential (LJP), the phenomenon that occurs when two electrolyte solutions of different composition come into contact, prevents accurate measurements in potentiometry. The effect of the LJP is usually remarkable in measurements of diluted solutions with low buffering capacities or low ion concentrations. Our group has constructed a simple method to eliminate the LJP by exerting spatiotemporal control of a liquid junction (LJ) formed between two solutions, a sample solution and a baseline solution (BLS), in a flow-through-type differential pH sensor probe. The method was contrived based on microfluidics. The sensor probe is a differential measurement system composed of two ion-sensitive field-effect transistors (ISFETs) and one Ag/AgCl electrode. With our new method, the border region of the sample solution and BLS is vibrated in order to mix solutions and suppress the overshoot after the sample solution is suctioned into the sensor probe. Compared to the conventional method without vibration, our method shortened the settling time from over two min to 15 s and reduced the measurement error by 86% to within 0.060 pH. This new method will be useful for improving the response characteristics and decreasing the measurement error of many apparatuses that use LJs.


Assuntos
Eletrodos , Concentração de Íons de Hidrogênio , Potenciometria/métodos
6.
Physiol Rep ; 12(8): e16013, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38644486

RESUMO

Investigating ventricular diastolic properties is crucial for understanding the physiological cardiac functions in organisms and unraveling the pathological mechanisms of cardiovascular disorders. Ventricular stiffness, a fundamental parameter that defines ventricular diastolic functions in chordates, is typically analyzed using the end-diastolic pressure-volume relationship (EDPVR). However, comparing ventricular stiffness accurately across chambers of varying maximum volume capacities has been a long-standing challenge. As one of the solutions to this problem, we propose calculating a relative ventricular stiffness index by applying an exponential approximation formula to the EDPVR plot data of the relationship between ventricular pressure and values of normalized ventricular volume by the ventricular weight. This article reviews the potential, utility, and limitations of using normalized EDPVR analysis in recent studies. Herein, we measured and ranked ventricular stiffness in differently sized and shaped chambers using ex vivo ventricular pressure-volume analysis data from four animals: Wistar rats, red-eared slider turtles, masu salmon, and cherry salmon. Furthermore, we have discussed the mechanical effects of intracellular and extracellular viscoelastic components, Titin (Connectin) filaments, collagens, physiological sarcomere length, and other factors that govern ventricular stiffness. Our review provides insights into the comparison of ventricular stiffness in different-sized ventricles between heterologous and homologous species, including non-model organisms.


Assuntos
Ventrículos do Coração , Animais , Ratos , Diástole/fisiologia , Ventrículos do Coração/fisiopatologia , Especificidade da Espécie , Função Ventricular/fisiologia , Tartarugas , Salmão
7.
J Morphol ; 285(10): e21776, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39279215

RESUMO

Fish vertebrae are primarily morphologically classified into precaudal vertebrae jointed to the ribs and caudal vertebrae with hemal spines, through which the caudal artery and veins pass. Moray eels (family Muraenidae) capture prey by directly biting, combining oral and pharyngeal jaw. During feeding motions, they exhibit various head manipulations, such as neurocranial elevation, ventral flexion, and horizontal shaking, with their postcranial region acting like the neck of amniotes. However, the bone morphology supporting these movements remains unclear. In this study, the vertebral morphologies of the Kidako moray (Gymnothorax kidako), starry moray (Echidna nebulosa), pink-lipped moray (Echidna rhodochilus), tidepool snake moray (Uropterygius micropterus), and Seychelles moray (Anarchias seychellensis) were investigated using X-ray computed tomography. These five species exhibited longitudinal ventral processes in the second to approximately 12th precaudal vertebrae with canals for blood vessels, structurally similar to hemal spines. In addition, the morphology of the precaudal vertebrae in three Anguilliformes species closely related to moray eels and two Gasterosteiformes species, including a seahorse that flexes its head ventrally as a feeding motion, was compared with that of moray eels. However, no remarkable ventral processes were observed in their precaudal vertebrae in the postcranial region, suggesting that these structural features in the postcranial vertebrae were preserved in Muraenidae but not necessarily required for the fish to bend its head ventrally. Although the functional significance of the ventral process has yet to be determined, our findings highlight a novel aspect of fish vertebral morphology.


Assuntos
Enguias , Coluna Vertebral , Animais , Enguias/anatomia & histologia , Coluna Vertebral/anatomia & histologia , Tomografia Computadorizada por Raios X
8.
Sci Rep ; 14(1): 13727, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877142

RESUMO

Connectin (also known as titin) is a giant striated muscle protein that functions as a molecular spring by providing elasticity to the sarcomere. Novex-3 is a short splice variant of connectin whose physiological function remains unknown. We have recently demonstrated using in vitro analyses that in addition to sarcomere expression, novex-3 was also expressed in cardiomyocyte nuclei exclusively during fetal life, where it provides elasticity/compliance to cardiomyocyte nuclei and promotes cardiomyocyte proliferation in the fetus, suggesting a non-sarcomeric function. Here, we analyzed novex-3 knockout mice to assess the involvement of this function in cardiac pathophysiology in vivo. Deficiency of novex-3 compromised fetal cardiomyocyte proliferation and induced the enlargement of individual cardiomyocytes in neonates. In adults, novex-3 deficiency resulted in chamber dilation and systolic dysfunction, associated with Ca2+ dysregulation, resulting in a reduced life span. Mechanistic analyses revealed a possible association between impaired proliferation and abnormal nuclear mechanics, including stiffer nuclei positioned peripherally with stabilized circumnuclear microtubules in knockout cardiomyocytes. Although the underlying causal relationships were not fully elucidated, these data show that novex-3 has a vital non-sarcomeric function in cardiac pathophysiology and serves as an early contributor to cardiomyocyte proliferation.


Assuntos
Núcleo Celular , Proliferação de Células , Conectina , Camundongos Knockout , Miócitos Cardíacos , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Camundongos , Núcleo Celular/metabolismo , Conectina/genética , Conectina/metabolismo , Sarcômeros/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/deficiência , Cálcio/metabolismo
9.
Acta Med Okayama ; 66(6): 435-42, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23254577

RESUMO

Although propofol is commonly used for general anesthesia, its direct effects on left ventricular (LV) contractility and energetics remain unknown. Accordingly, we studied the effects of intracoronary propofol on excised cross-circulated canine hearts using the framework of the Emax (a contractility index)-PVA (systolic pressure-volume area, a measure of total mechanical energy)-V(O2) (myocardial oxygen consumption per beat) relationship. We obtained 1) the V(O2)-PVA relationship of isovolumic contractions with varied LV volumes at a constant Emax, 2) the V(O2)-PVA relationship with varied LV volumes at a constant intracoronary concentration of propofol, and 3) the V(O2)-PVA relationship under increased intracoronary concentrations of either propofol or CaCl(2) at a constant LV volume to assess the cardiac mechanoenergetic effects of propofol. We found that propofol decreased Emax dose-dependently. The slope of the linear V(O2)-PVA relationship (oxygen cost of PVA) remained unchanged by propofol. The PVA-independent V(O2)-Emax relationship (oxygen cost of Emax) was the same for propofol and Ca(2+). In conclusion, propofol showed a direct negative inotropic effect on LV. At its clinical concentrations, decreases in contractility by propofol were relatively small. Propofol shows mechanoenergetic effects on the LV that are similar to those of Ca(2+) blockers or ß-antagonists-i.e., it exerts negative inotropic effects without changing the oxygen costs of Emax and PVA.


Assuntos
Anestésicos Intravenosos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Propofol/farmacologia , Animais , Circulação Cruzada , Cães , Técnicas In Vitro
10.
PLoS One ; 17(11): e0267264, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36331913

RESUMO

Ventricular diastolic mechanical properties are important determinants of cardiac function and are optimized by changes in cardiac structure and physical properties. Oncorhynchus masou masou is an anadromous migratory fish of the Salmonidae family, and several ecological studies on it have been conducted; however, the cardiac functions of the fish are not well known. Therefore, we investigated ventricular diastolic function in landlocked (masu salmon) and sea-run (cherry salmon) types at 29-30 months post fertilization. Pulsed-wave Doppler echocardiography showed that the atrioventricular inflow waveforms of cherry salmon were biphasic with early diastolic filling and atrial contraction, whereas those of masu salmon were monophasic with atrial contraction. In addition, end-diastolic pressure-volume relationship analysis revealed that the dilatability per unit myocardial mass of the ventricle in cherry salmon was significantly suppressed compared to that in masu salmon, suggesting that the ventricle of the cherry salmon was relatively stiffer (relative ventricular stiffness index; p = 0.0263). Contrastingly, the extensibility of cardiomyocytes, characterized by the expression pattern of Connectin isoforms in their ventricles, was similar in both types. Histological analysis showed that the percentage of the collagen accumulation area in the compact layer of cherry salmon increased compared with that of the masu salmon, which may contribute to ventricle stiffness. Although the heart mass of cherry salmon was about 11-fold greater than that of masu salmon, there was no difference in the morphology of the isolated cardiomyocytes, suggesting that the heart of the cherry salmon grows by cardiomyocyte proliferation, but not cell hypertrophy. The cardiac physiological function of the teleosts varies with differences in their developmental processes and life history. Our multidimensional analysis of the O. masou heart may provide a clue to the process by which the heart acquires a biphasic blood-filling pattern, i.e., a ventricular diastolic suction.


Assuntos
Oncorhynchus , Animais , Oncorhynchus/fisiologia , Hemodinâmica
11.
iScience ; 25(5): 104337, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35602953

RESUMO

Introduction of fetal cell cycle genes into damaged adult hearts has emerged as a promising strategy for stimulating proliferation and regeneration of postmitotic adult cardiomyocytes. We have recently identified Fam64a as a fetal-specific cell cycle promoter in cardiomyocytes. Here, we analyzed transgenic mice maintaining cardiomyocyte-specific postnatal expression of Fam64a when endogenous expression was abolished. Despite an enhancement of cardiomyocyte proliferation, these mice showed impaired cardiomyocyte differentiation during postnatal development, resulting in cardiac dysfunction in later life. Mechanistically, Fam64a inhibited cardiomyocyte differentiation by repressing Klf15, leading to the accumulation of undifferentiated cardiomyocytes. In contrast, introduction of Fam64a in differentiated adult wildtype hearts improved functional recovery upon injury with augmented cell cycle and no dedifferentiation in cardiomyocytes. These data demonstrate that Fam64a inhibits cardiomyocyte differentiation during early development, but does not induce de-differentiation in once differentiated cardiomyocytes, illustrating a promising potential of Fam64a as a cell cycle promoter to attain heart regeneration.

12.
iScience ; 25(7): 104582, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35789860

RESUMO

Abnormal mitochondrial fragmentation by dynamin-related protein1 (Drp1) is associated with the progression of aging-associated heart diseases, including heart failure and myocardial infarction (MI). Here, we report a protective role of outer mitochondrial membrane (OMM)-localized E3 ubiquitin ligase MITOL/MARCH5 against cardiac senescence and MI, partly through Drp1 clearance by OMM-associated degradation (OMMAD). Persistent Drp1 accumulation in cardiomyocyte-specific MITOL conditional-knockout mice induced mitochondrial fragmentation and dysfunction, including reduced ATP production and increased ROS generation, ultimately leading to myocardial senescence and chronic heart failure. Furthermore, ischemic stress-induced acute downregulation of MITOL, which permitted mitochondrial accumulation of Drp1, resulted in mitochondrial fragmentation. Adeno-associated virus-mediated delivery of the MITOL gene to cardiomyocytes ameliorated cardiac dysfunction induced by MI. Our findings suggest that OMMAD activation by MITOL can be a therapeutic target for aging-associated heart diseases, including heart failure and MI.

13.
Acta Med Okayama ; 64(5): 277-83, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20975760

RESUMO

Endothelial glycocalyx (GCX) has been reported as a protective factor for vascular endothelial cells (VEC) in diabetes and hypertension. However, the involvement of GCX impairment in ocular vasculopathy remains unclear. We evaluated the changes in the GCX thicknesses of the retinal and choroidal capillaries in rats with diabetes and hypertension by cationic colloidal iron staining using a transmission electron microscope. In the control group, the mean (standard error of the mean) thicknesses of retinal and choroidal GCX were 60.2 (1.5) nm and 84.3 (3.1) nm, respectively. The diabetic rats showed a significant decrease of GCX thickness in the retina, but not in the choroid, compared to controls (28.3 (0.3) nm, p<0.01 and 77.8 (1.4) nm, respectively). In the hypertensive rats, both retinal and choroidal GCX were significantly decreased compared to the control values (10.9 (0.4) nm and 13.2 (1.0) nm, respectively, both p<0.01). Moreover, we could visualize the adhesion of leukocytes and platelets on the luminal surface of VEC, at the site where the GCX was markedly degraded. These findings suggest that the GCX prevents adhesion of leukocytes and platelets to the VEC surface, and this impairment may lead to ocular vasculopathy in diabetes and hypertension.


Assuntos
Capilares/metabolismo , Corioide/irrigação sanguínea , Diabetes Mellitus Experimental/metabolismo , Endotélio Vascular/metabolismo , Glicocálix/metabolismo , Hipertensão/metabolismo , Vasos Retinianos/metabolismo , Animais , Plaquetas/patologia , Plaquetas/ultraestrutura , Capilares/patologia , Capilares/ultraestrutura , Adesão Celular , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Modelos Animais de Doenças , Endotélio Vascular/patologia , Endotélio Vascular/ultraestrutura , Hipertensão/complicações , Hipertensão/patologia , Leucócitos/patologia , Leucócitos/ultraestrutura , Masculino , Microscopia Eletrônica de Transmissão , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Estreptozocina , Doenças Vasculares/etiologia , Doenças Vasculares/metabolismo , Doenças Vasculares/patologia
14.
Clin Hemorheol Microcirc ; 41(2): 127-36, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19252235

RESUMO

Impaired deformability might contribute to the accumulation of activated leukocytes within pulmonary microcapillaries, leading to acute lung injury. The purpose of our study was to investigate changes in leukocyte deformability during periods of inflammation after esophagectomy. The study group comprised 20 patients who underwent esophagectomy. Changes in leukocyte deformability were investigated by examining filtration through a silicon microchannel, which simulated human pulmonary microcapillaries. Changes in the neutrophil cytoskeleton were investigated by measuring neutrophil F-actin assembly. The severity of patient clinical outcome was evaluated by the lung injury score. Leukocyte filtration through the microchannel was significantly weaker in esophagectomy patients than in healthy subjects (p<0.01). After esophagectomy, filtration was further impaired compared with preoperative values (p<0.05). The neutrophil F-actin content was higher in patients than in controls (p<0.01), and increased after esophagectomy compared with preoperative values (p<0.01). We concluded that circulating leukocytes showed reduced deformability and appeared to be sequestered within microcapillaries after esophagectomy. Changes in neutrophil cytoskeleton were considered to be responsible for the reduced deformability. Leukocyte accumulation within pulmonary microcapillaries might be related to the pathogenesis of lung injury after esophagectomy.


Assuntos
Lesão Pulmonar Aguda/imunologia , Esofagectomia/efeitos adversos , Neutrófilos/fisiologia , Complicações Pós-Operatórias/imunologia , Lesão Pulmonar Aguda/fisiopatologia , Estudos de Casos e Controles , Feminino , Citometria de Fluxo , Hemorreologia/imunologia , Humanos , Inflamação/fisiopatologia , Masculino , Microcirculação/imunologia , Técnicas Analíticas Microfluídicas , Neutrófilos/ultraestrutura , Circulação Pulmonar/imunologia
15.
Methods Mol Biol ; 1887: 109-117, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30506253

RESUMO

Fishy odor of fish flesh (meat) presents a severe problem for marine production. The main cause of fishy odor is trimethylamine (TMA), which increases during storage. It is produced from trimethylamine oxide (TMAO), an osmosis-regulating substance in fish cells that functions by a reduction reaction. Bacterial growth in fish meat increases TMA. Its odor reduces the commercial value of the meat. Technologies for its regulation and elimination are desired. This chapter presents a description of the use of lactic acid to eliminate TMA. The lactic acid is producible safely by bacteria during food processing using picric acid-toluene.A method of eliminating TMA was demonstrated using Lactobacillus plantarum H78. Furthermore, an assay method was explained for reducing TMA in fish meat by fermenting the H78 strain.


Assuntos
Biotransformação , Pesqueiros , Lactobacillales/isolamento & purificação , Lactobacillales/metabolismo , Metilaminas/metabolismo , Odorantes , Metilaminas/isolamento & purificação , Alimentos Marinhos
16.
Nat Commun ; 10(1): 5754, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848331

RESUMO

Heart failure is the major cause of death for muscular dystrophy patients, however, the molecular pathomechanism remains unknown. Here, we show the detailed molecular pathogenesis of muscular dystrophy-associated cardiomyopathy in mice lacking the fukutin gene (Fktn), the causative gene for Fukuyama muscular dystrophy. Although cardiac Fktn elimination markedly reduced α-dystroglycan glycosylation and dystrophin-glycoprotein complex proteins in sarcolemma at all developmental stages, cardiac dysfunction was observed only in later adulthood, suggesting that membrane fragility is not the sole etiology of cardiac dysfunction. During young adulthood, Fktn-deficient mice were vulnerable to pathological hypertrophic stress with downregulation of Akt and the MEF2-histone deacetylase axis. Acute Fktn elimination caused severe cardiac dysfunction and accelerated mortality with myocyte contractile dysfunction and disordered Golgi-microtubule networks, which were ameliorated with colchicine treatment. These data reveal fukutin is crucial for maintaining myocyte physiology to prevent heart failure, and thus, the results may lead to strategies for therapeutic intervention.


Assuntos
Insuficiência Cardíaca/etiologia , Músculo Esquelético/patologia , Distrofias Musculares/complicações , Miócitos Cardíacos/patologia , Transferases/genética , Adulto , Fatores Etários , Animais , Animais Recém-Nascidos , Sistemas CRISPR-Cas/genética , Células Cultivadas , Modelos Animais de Doenças , Distroglicanas/metabolismo , Feminino , Técnicas de Inativação de Genes , Glicosilação , Células HEK293 , Insuficiência Cardíaca/patologia , Ventrículos do Coração/citologia , Ventrículos do Coração/patologia , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Músculo Esquelético/citologia , Distrofias Musculares/genética , Distrofias Musculares/patologia , Contração Miocárdica/genética , Miócitos Cardíacos/citologia , Cultura Primária de Células , Sarcolema/patologia , Transferases/metabolismo
17.
Shock ; 29(3): 395-401, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17693939

RESUMO

Hypovolemia results in hypotension due to a decrease in left ventricular (LV) stroke volume. We have showed a logistic relaxation time constant (tauL) that is a superior lusitropic index during the LV pressure (LVP) falling phase independent of LV preload compared with the conventional monoexponential relaxation time constant (tauE). In the present study, we investigated the effect of decreasing LV preload on tauL and tauE during the LV contraction and other relaxation phases. The isovolumic LVP curve was analyzed at LV Volumes (LVVs) of 18, 14, and 10 mL during 2-Hz pacing in seven excised, cross-circulated canine hearts. TauL and tauE were evaluated using logistic and monoexponential analyses of the four phases of the cardiac cycle: the period from the onset to the maximum time derivative of LVP (LV dP/dtmax), from LV dP/dtmax to peak LVP, from peak LVP to the minimum time derivative of LVP (LV dP/dtmin), and from LV dP/dtmin to LV end-diastolic pressure. TauL and tauE during the four phases did not change significantly with the decrease in LVV. During the change in LVV, the logistic function always fit significantly better compared with the monoexponential function. In conclusion, hypovolemia does not affect the speed of isovolumic LV contraction and relaxation. Each phase of the LVP curve is of a logistic nature. TauL is as a useful index for estimation of the speed of alteration during each phase of cardiac systole and diastole.


Assuntos
Hipovolemia/fisiopatologia , Disfunção Ventricular Esquerda/fisiopatologia , Animais , Volume Sanguíneo/fisiologia , Circulação Cruzada , Cães , Modelos Logísticos , Modelos Cardiovasculares , Contração Miocárdica/fisiologia
18.
J Biotechnol ; 133(1): 82-9, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17981352

RESUMO

Human vascular endothelial cells form the interface between the bloodstream and vessel walls and are continuously subjected to mechanical stimulation. When endothelial cells are stretched cyclically, along one axis, they align perpendicular to the axis of stretch. We previously reported that applying a cyclic, uni-axial strain to cells induced tyrosine phosphorylation of focal adhesion kinase and stimulated mitogen-activated protein kinase. However, it is difficult to quantify and analyze the spatial distribution of tyrosine phosphorylation in these cells, as they form focal adhesions randomly. In this study, we developed a system to overcome this problem by preparing individual, uniform, patterned cells that could be stretched cyclically and uni-axially. We constructed polydimethylsiloxane stretch chambers and used microcontact printing technology to imprint a pattern of 2 microm fibronectin dots (10 lines x 10 columns in a 38 microm square) before seeding them with human umbilical vein endothelial cells (HUVEC). We found that most HUVEC attached to the patterned dots after 2h and were similar in size and morphology, based on phase-contrast microscopy. In this system we were able to statistically analyze tyrosine phosphorylation and actin polymerization in these patterned cells, when subjected to a cyclic, uni-axial strain, using fluorescent microscopy.


Assuntos
Adesão Celular/fisiologia , Técnicas de Cultura de Células/métodos , Dimetilpolisiloxanos/química , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Fibronectinas/farmacologia , Mecanotransdução Celular/fisiologia , Nylons/química , Adesão Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Fibronectinas/química , Humanos , Mecanotransdução Celular/efeitos dos fármacos
19.
Sci Rep ; 8(1): 12337, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30120340

RESUMO

Loss of cardiomyocyte proliferative capacity after birth is a major obstacle for therapeutic heart regeneration in adult mammals. We and others have recently shown the importance of hypoxic in utero environments for active foetal cardiomyocyte proliferation. Here, we report the unexpected expression of novex-3, the short splice variant of the giant sarcomeric protein connectin (titin), in the cardiomyocyte nucleus specifically during the hypoxic foetal stage in mice. This nuclear localisation appeared to be regulated by the N-terminal region of novex-3, which contains the nuclear localisation signal. Importantly, the nuclear expression of novex-3 in hypoxic foetal cardiomyocytes was repressed at the postnatal stage following the onset of breathing and the resulting elevation of oxygen tension, whereas the sarcomeric expression remained unchanged. Novex-3 knockdown in foetal cardiomyocytes repressed cell cycle-promoting genes and proliferation, whereas novex-3 overexpression enhanced proliferation. Mechanical analysis by atomic force microscopy and microneedle-based tensile tests demonstrated that novex-3 expression in hypoxic foetal cardiomyocytes contributes to the elasticity/compliance of the nucleus at interphase and facilitates proliferation, by promoting phosphorylation-induced disassembly of multimer structures of nuclear lamins. We propose that novex-3 has a previously unrecognised role in promoting cardiomyocyte proliferation specifically at the hypoxic foetal stage.


Assuntos
Conectina/metabolismo , Hipóxia/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Biomarcadores , Ciclo Celular/genética , Núcleo Celular/metabolismo , Conectina/química , Conectina/genética , Imunofluorescência , Expressão Gênica , Hipóxia/genética , Interfase/genética , Laminas/química , Laminas/metabolismo , Camundongos , Miócitos Cardíacos/citologia , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Sinais Direcionadores de Proteínas , Transporte Proteico
20.
J Agric Food Chem ; 66(43): 11320-11329, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30280574

RESUMO

Luteolin is a flavonoid present in plants in the form of aglycone or glucosides. In this study, luteolin glucosides (i.e., luteolin-7- O-ß-d-glucoside, luteolin-7- O-[2-(ß-d-apiosyl)-ß-d-glucoside], and luteolin-7- O-[2-(ß-d-apiosyl)-6-malonyl-ß-d-glucoside]) prepared from green pepper leaves as well as luteolin aglycone were orally administered to rats. Regardless of the administered luteolin form, luteolin glucuronides were mainly detected from plasma and organs. Subsequently, luteolin aglycone, the most absorbed form of luteolin in rats, was orally administered to humans. As a result, luteolin-3'- O-sulfate was mainly identified from plasma, suggesting that not only luteolin form but also animal species affect the absorption and metabolism of luteolin. When LPS-treated RAW264.7 cells were treated with luteolin glucuronides and luteolin sulfate (the characteristic metabolites identified from rats and humans, respectively), the different luteolin conjugates were metabolized in different ways, suggesting that such difference in metabolism results in their difference in anti-inflammatory effects.


Assuntos
Glucosídeos/metabolismo , Luteolina/metabolismo , Administração Oral , Adulto , Animais , Capsicum/química , Cromatografia Líquida , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Estrutura Molecular , Folhas de Planta/química , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA