Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 624(7991): 267-274, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092906

RESUMO

The phase-coherent frequency division of a stabilized optical reference laser to the microwave domain is made possible by optical-frequency combs (OFCs)1,2. OFC-based clockworks3-6 lock one comb tooth to a reference laser, which probes a stable atomic transition, usually through an active servo that increases the complexity of the OFC photonic and electronic integration for fieldable clock applications. Here, we demonstrate that the Kerr nonlinearity enables passive, electronics-free synchronization of a microresonator-based dissipative Kerr soliton (DKS) OFC7 to an externally injected reference laser. We present a theoretical model explaining this Kerr-induced synchronization (KIS), which closely matches experimental results based on a chip-integrated, silicon nitride, micro-ring resonator. Once synchronized, the reference laser captures an OFC tooth, so that tuning its frequency provides direct external control of the OFC repetition rate. We also show that the stability of the repetition rate is linked to that of the reference laser through the expected frequency division factor. Finally, KIS of an octave-spanning DKS exhibits enhancement of the opposite dispersive wave, consistent with the theoretical model, and enables improved self-referencing and access to the OFC carrier-envelope offset frequency. The KIS-mediated enhancements we demonstrate can be directly implemented in integrated optical clocks and chip-scale low-noise microwave generators.

2.
Opt Lett ; 49(11): 3118-3121, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824342

RESUMO

Nonlinear microresonators can convert light from chip-integrated sources into new wavelengths within the visible and near-infrared spectrum. For most applications, such as the interrogation of quantum systems with specific transition wavelengths, tuning the frequency of converted light is critical. Nonetheless, demonstrations of wavelength conversion have mostly overlooked this metric. Here, we apply efficient integrated heaters to tune the idler frequency produced by the Kerr optical parametric oscillation in a silicon nitride microring across a continuous 1.5 terahertz range. Finally, we suppress idler frequency noise between DC and 5 kHz by several orders of magnitude using feedback to the heater drive.

3.
Opt Lett ; 46(2): 222-225, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33448992

RESUMO

Quantum frequency conversion (QFC) between the visible and telecom is a key to connect quantum memories in fiber-based quantum networks. Current methods for linking such widely separated frequencies, such as sum/difference frequency generation and four-wave mixing Bragg scattering, are prone to broadband noise generated by the pump laser(s). To address this issue, we propose to use third-order sum/difference frequency generation (TSFG/TDFG) for an upconversion/downconversion QFC interface. In this process, two long wavelength pump photons combine their energy and momentum to mediate frequency conversion across the large spectral gap between the visible and telecom bands, which is particularly beneficial from the noise perspective. We show that waveguide-coupled silicon nitride microring resonators can be designed for efficient QFC between 606 and 1550 nm via a 1990 nm pump through TSFG/TDFG. We simulate the device dispersion and coupling, and from the simulated parameters, estimate that the frequency conversion can be efficient (${\gt}80 \%$) at 50 mW pump power. Our results suggest that microresonator TSFG/TDFG is promising for compact, scalable, and low-power QFC across large spectral gaps.

4.
Opt Lett ; 46(23): 5970-5973, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851936

RESUMO

Microresonator frequency combs, or microcombs, have gained wide appeal for their rich nonlinear physics and wide range of applications. Stoichiometric silicon nitride films grown via low-pressure chemical vapor deposition (LPCVD), in particular, are widely used in chip-integrated Kerr microcombs. Critical to such devices is the ability to control the microresonator dispersion, which has contributions from both material refractive index dispersion and geometric confinement. Here, we show that modifications to the ratio of the gaseous precursors in LPCVD growth have a significant impact on material dispersion and hence the overall microresonator dispersion. In contrast to the many efforts focused on comparisons between Si-rich films and stoichiometric (Si3N4) films, here, we focus on films whose precursor gas ratios should nominally place them in the stoichiometric regime. We further show that microresonator geometric dispersion can be tuned to compensate for changes in the material dispersion.

5.
Opt Express ; 28(26): 39340-39353, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33379486

RESUMO

Direct laser writing (DLW) has recently been used to create versatile micro-optic structures that facilitate photonic-chip coupling, like free-form lenses, free-form mirrors, and photonic wirebonds. However, at the edges of photonic chips, the top-down/off-axis printing orientation typically used limits the size and complexity of structures and the range of materials compatible with the DLW process. To avoid these issues, we develop a DLW method in which the photonic chip's optical input/output (IO) ports are co-linear with the axis of the lithography beam (on-axis printing). Alignment automation and port identification are enabled by a 1-dimensional barcode-like pattern that is fabricated within the chip's device layer and surrounds the IO waveguides to increase their visibility. We demonstrate passive alignment to these markers using standard machine vision techniques, and print single-element elliptical lenses along an array of 42 ports with a 100 % fabrication yield. These lenses improve fiber-to-chip misalignment tolerance relative to other fiber-based coupling techniques. The 1 dB excess loss diameter increases from ≈ 2.3 µm when using a lensed fiber to ≈ 9.9 µm when using the DLW printed micro-optic and a cleaved fiber. The insertion loss penalty introduced by moving to this misalignment-tolerant coupling approach is limited, with an additional loss (in comparison to the lensed fiber) as small as ≈1 dB and ≈2 dB on average. Going forward, on-axis printing can accommodate a variety of multi-element free-space and guided wave coupling elements, without requiring calibration of printing dose specific to the geometry of the 3D printed structure or to the materials comprising the photonic chip. It also enables novel methods for interconnection between chips. To that end, we fabricate a proof-of-concept 3D photonic wire bond between two vertically stacked photonic chips.

6.
Opt Lett ; 45(17): 4939, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32870895

RESUMO

This publisher's note contains corrections to Opt. Lett.44, 4737 (2019) OPLEDP0146-959210.1364/OL.44.004737.

7.
Opt Lett ; 44(19): 4737-4740, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31568430

RESUMO

Octave-spanning frequency combs have been successfully demonstrated in Kerr nonlinear microresonators. These microcombs rely on both engineered dispersion, to enable generation of frequency components across the octave, and on engineered coupling, to efficiently extract the generated light into an access waveguide while maintaining a close to critically coupled pump. The latter is challenging, as the spatial overlap between the access waveguide and the ring modes decays with frequency. This leads to strong coupling variation across the octave, with poor extraction at short wavelengths. Here, we investigate how a waveguide wrapped around a portion of the resonator, in a pulley scheme, can improve the extraction of octave-spanning microcombs, in particular at short wavelengths. We use the coupled-mode theory to predict the performance of the pulley couplers and demonstrate good agreement with experimental measurements. Using an optimal pulley coupling design, we demonstrate a 20 dB improvement in extraction at short wavelengths compared to straight waveguide coupling.

8.
Nano Lett ; 18(10): 6515-6520, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30252485

RESUMO

Generating and amplifying light in silicon (Si) continues to attract significant attention due to the possibility of integrating optical and electronic components in a single material platform. Unfortunately, silicon is an indirect band gap material and therefore an inefficient emitter of light. With the rise of integrated photonics, the search for silicon-based light sources has evolved from a scientific quest to a major technological bottleneck for scalable, CMOS-compatible, light sources. Recently, emerging two-dimensional materials have opened the prospect of tailoring material properties based on atomic layers. Few-layer phosphorene, which is isolated through exfoliation from black phosphorus (BP), is a great candidate to partner with silicon due to its layer-tunable direct band gap in the near-infrared where silicon is transparent. Here we demonstrate a hybrid silicon optical emitter composed of few-layer phosphorene nanomaterial flakes coupled to silicon photonic crystal resonators. We show single-mode emission in the telecommunications band of 1.55 µm ( Eg = 0.8 eV) under continuous wave optical excitation at room temperature. The solution-processed few-layer BP flakes enable tunable emission across a broad range of wavelengths and the simultaneous creation of multiple devices. Our work highlights the versatility of the Si-BP material platform for creating optically active devices in integrated silicon chips.

9.
Opt Express ; 26(5): 6400-6406, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29529832

RESUMO

We demonstrate that conformal encapsulation using atomic layer deposition of GaAs nano-cavity resonator made of photonic crystal cavity prevents photo-induced oxidation. This improvement allows injecting a large quantity of energy in the resonator without any degradation of the material, thus enabling spectral stability of the resonance. We prove second harmonic and third harmonic generation over more than one decade of pump power variation, thanks to this encapsulation, with a total efficiency (ηSHG = 8.3 × 10-5 W-1 and ηTHG = 1.2 × 10-3 W-2 ) and a large net output energy for both operations (PSHGout=0.2nW and PTHGout=8pW).

10.
Opt Lett ; 43(12): 2772-2775, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29905685

RESUMO

We propose and theoretically investigate a dispersion-engineered Si3N4 microring resonator, based on a cross section containing a partially-etched trench, that supports phase-locked, two-color soliton microcomb states. These soliton states consist of a single circulating intracavity pulse with a modulated envelope that sits on a continuous wave background. Such temporal waveforms produce a frequency comb whose spectrum is spread over two widely-spaced spectral windows, each exhibiting a squared hyperbolic secant envelope, with the two windows phase-locked to each other via Cherenkov radiation. The first spectral window is centered near the 1550 nm pump, while the second spectral window is tailored based on straightforward geometric control, and can be centered as short as 750 nm and as long as 3000 nm. We numerically analyze the robustness of the design to parameter variation, and consider its implications to self-referencing and visible wavelength comb generation.

11.
Opt Lett ; 42(4): 795-798, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28198867

RESUMO

We demonstrated a twofold acceleration of the fast time constant characterizing the recovery of a p-doped indium-phosphide photonic crystal all-optical gate. Time-resolved spectral analysis is compared to a three-dimensional drift-diffusion model for the carrier dynamics, demonstrating the transition from the ambipolar to the faster minority carrier dominated diffusion regime. This opens the perspective for faster yet efficient nanophotonic all-optical gates.

12.
Opt Express ; 23(19): 24163-70, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26406622

RESUMO

A compact (15µm × 15µm) and highly-optimized 2×2 optical switch is demonstrated on a CMOS-compatible photonic crystal technology. On-chip insertion loss are below 1 dB, static and dynamic contrast are 40 dB and >20 dB respectively. Owing to efficient thermo-optic design, the power consumption is below 3 mW while the switching time is 1 µs.

14.
Science ; 384(6702): 1356-1361, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38900874

RESUMO

On-chip generation of optical frequency combs using nonlinear ring resonators has enabled numerous applications of combs that were otherwise limited to mode-locked lasers. Nevertheless, on-chip frequency combs have relied predominantly on single-ring resonators. In this study, we experimentally demonstrate the generation of a novel class of frequency combs, the topological frequency combs, in a two-dimensional lattice of hundreds of ring resonators that hosts fabrication-robust topological edge states with linear dispersion. By pumping these edge states, we demonstrate the generation of a nested frequency comb that shows oscillation of multiple edge state resonances across ≈40 longitudinal modes and is spatially confined at the lattice edge. Our results provide an opportunity to explore the interplay between topological physics and nonlinear frequency comb generation in a commercially available nanophotonic platform.

15.
Opt Lett ; 38(3): 254-6, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23381402

RESUMO

We use numerical simulations to show that a suitably dimensioned periodic arrangement of vertical metallic metal-dielectric-metal nanocavities supports a hybrid plasmonic mode whose spatial electric field distribution is suitable for use in infrared photodetectors based on an unpatterned semiconductor thin-film absorbing layer. The partially localized nature of the hybrid mode offers reduced sensitivity to the angle of incoming light and smaller pixel sizes compared with surface plasmonic modes coupled by diffraction.

16.
Commun Phys ; 62023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38450291

RESUMO

Dispersion engineering of microring resonators is crucial for optical frequency comb applications, to achieve targeted bandwidths and powers of individual comb teeth. However, conventional microrings only present two geometric degrees of freedom - width and thickness - which limits the degree to which dispersion can be controlled. We present a technique where we tune individual resonance frequencies for arbitrary dispersion tailoring. Using a photonic crystal microring resonator that induces coupling to both directions of propagation within the ring, we investigate an intuitive design based on Fourier synthesis. Here, the desired photonic crystal spatial profile is obtained through a Fourier relationship with the targeted modal frequency shifts, where each modal shift is determined based on the corresponding effective index modulation of the ring. Experimentally, we demonstrate several distinct dispersion profiles over dozens of modes in transverse magnetic polarization. In contrast, we find that the transverse electric polarization requires a more advanced model that accounts for the discontinuity of the field at the modulated interface. Finally, we present simulations showing arbitrary frequency comb spectral envelope tailoring using our Frequency synthesis approach.

17.
Nat Commun ; 14(1): 242, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646688

RESUMO

Optical parametric oscillation (OPO) is distinguished by its wavelength access, that is, the ability to flexibly generate coherent light at wavelengths that are dramatically different from the pump laser, and in principle bounded solely by energy conservation between the input pump field and the output signal/idler fields. As society adopts advanced tools in quantum information science, metrology, and sensing, microchip OPO may provide an important path for accessing relevant wavelengths. However, a practical source of coherent light should additionally have high conversion efficiency and high output power. Here, we demonstrate a silicon photonics OPO device with unprecedented performance. Our OPO device, based on the third-order (χ(3)) nonlinearity in a silicon nitride microresonator, produces output signal and idler fields widely separated from each other in frequency ( > 150 THz), and exhibits a pump-to-idler conversion efficiency up to 29 % with a corresponding output idler power of > 18 mW on-chip. This performance is achieved by suppressing competitive processes and by strongly overcoupling the output light. This methodology can be readily applied to existing silicon photonics platforms with heterogeneously-integrated pump lasers, enabling flexible coherent light generation across a broad range of wavelengths with high output power and efficiency.

18.
Optica ; 7(12)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36733410

RESUMO

Optical parametric oscillators are widely used to generate coherent light at frequencies not accessible by conventional laser gain. However, chip-based parametric oscillators operating in the visible spectrum have suffered from pump-to-signal conversion efficiencies typically less than 0.1 %. Here, we demonstrate efficient optical parametric oscillators based on silicon nitride photonics that address frequencies between 260 THz (1150 nm) and 510 THz (590 nm). Pumping silicon nitride microrings near 385 THz (780 nm) yields monochromatic signal and idler waves with unprecedented output powers in this wavelength range. We estimate on-chip output powers (separately for the signal and idler) between 1 mW and 5 mW and conversion efficiencies reaching ≈15 %. Underlying this improved performance is our development of pulley waveguides for broadband near-critical coupling, which exploits a fundamental connection between the waveguide-resonator coupling rate and conversion efficiency. Finally, we find that mode competition reduces conversion efficiency at high pump powers, thereby constraining the maximum realizable output power. Our work proves that optical parametric oscillators built with integrated photonics can produce useful amounts of visible laser light with high efficiency.

19.
Phys Rev Appl ; 17(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-36591596

RESUMO

Optical parametric oscillation in a Kerr nonlinear microresonator can generate coherent laser light with frequencies that are widely separated from the pump frequency, allowing, for example, visible light to be generated using a near-infrared pump. To be practically useful, the pump-to-signal conversion efficiency must be far higher than what has been demonstrated in microresonator-based oscillators with widely-separated output frequencies. To address this challenge, here we theoretically and numerically study parametric oscillations in Kerr nonlinear microresonators, revealing an intricate solution space that arises from an interplay of nonlinear processes. As a start, we use a three-mode approximation to derive an efficiency-maximizing relation between pump power and frequency mismatch. However, realistic devices, such as integrated microring resonators, support far more than three modes. Hence, a more accurate model that includes the entire modal landscape is necessary to determine potential inefficiencies arising from unwanted competing nonlinear processes. To this end, we numerically simulate the Lugiato-Lefever Equation that accounts for the full spectrum of nonlinearly-coupled resonator modes. We observe and characterize two nonlinear phenomena linked to parametric oscillations in multi-mode resonators: Mode competition and cross phase modulation-induced modulation instability. Both processes may impact conversion efficiency. Finally, we show how to increase the conversion efficiency to ≈ 25 % by tuning the microresonator loss rates. Our analysis will guide microresonator designs that aim for high conversion efficiency and output power.

20.
Appl Phys Lett ; 119(12)2021.
Artigo em Inglês | MEDLINE | ID: mdl-38496785

RESUMO

Geometric dispersion in integrated microresonators plays a major role in nonlinear optics applications, especially at short wavelengths, to compensate the natural material normal dispersion. Tailoring of geometric confinement allows for anomalous dispersion, which in particular enables the formation of microcombs which can be tuned into the dissipative Kerr soliton (DKS) regime. Due to processes like soliton-induced dispersive wave generation, broadband DKS combs are particularly sensitive to higher-order dispersion, which in turn is sensitive to the ring dimensions at the nanometer-level. For microrings exhibiting a rectangular cross section, the ring width and thickness are the two main control parameters to achieve the targeted dispersion. The former can be easily varied through parameter variation within the lithography mask, yet the latter is defined by the film thickness during growth of the starting material stack, and can show a significant variation (few percent of the total thickness) over a single wafer. In this letter, we demonstrate that controlled dry-etching allows for fine tuning of the device layer (silicon nitride) thickness at the wafer level, allowing multi-project wafers targeting different wavelength bands, and post-fabrication trimming in air-clad ring devices. We demonstrate that such dry etching does not significantly affect either the silicon nitride surface roughness or the optical quality of the devices, thereby enabling fine tuning of the dispersion and the spectral shape of the resulting DKS states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA