Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
PLoS Genet ; 16(4): e1008324, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32287271

RESUMO

Transposable elements (TEs) are DNA repeats that must remain silenced to ensure cell integrity. Several epigenetic pathways including DNA methylation and histone modifications are involved in the silencing of TEs, and in the regulation of gene expression. In Arabidopsis thaliana, the TE-derived plant mobile domain (PMD) proteins have been involved in TE silencing, genome stability, and control of developmental processes. Using a forward genetic screen, we found that the PMD protein MAINTENANCE OF MERISTEMS (MAIN) acts synergistically and redundantly with DNA methylation to silence TEs. We found that MAIN and its close homolog MAIN-LIKE 1 (MAIL1) interact together, as well as with the phosphoprotein phosphatase (PPP) PP7-like (PP7L). Remarkably, main, mail1, pp7l single and mail1 pp7l double mutants display similar developmental phenotypes, and share common subsets of upregulated TEs and misregulated genes. Finally, phylogenetic analyses of PMD and PP7-type PPP domains among the Eudicot lineage suggest neo-association processes between the two protein domains to potentially generate new protein function. We propose that, through this interaction, the PMD and PPP domains may constitute a functional protein module required for the proper expression of a common set of genes, and for silencing of TEs.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Elementos de DNA Transponíveis/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Metilação de DNA , Epigênese Genética , Heterocromatina/metabolismo , Mutação , Proteínas Nucleares/genética , Fosfoproteínas Fosfatases/genética , Ligação Proteica , Domínios Proteicos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
2.
PLoS Genet ; 12(5): e1005998, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27171361

RESUMO

The MORC family of GHKL ATPases are an enigmatic class of proteins with diverse chromatin related functions. In Arabidopsis, AtMORC1, AtMORC2, and AtMORC6 act together in heterodimeric complexes to mediate transcriptional silencing of methylated DNA elements. Here, we studied Arabidopsis AtMORC4 and AtMORC7. We found that, in contrast to AtMORC1,2,6, they act to suppress a wide set of non-methylated protein-coding genes that are enriched for those involved in pathogen response. Furthermore, atmorc4 atmorc7 double mutants show a pathogen response phenotype. We found that AtMORC4 and AtMORC7 form homomeric complexes in vivo and are concentrated in discrete nuclear bodies adjacent to chromocenters. Analysis of an atmorc1,2,4,5,6,7 hextuple mutant demonstrates that transcriptional de-repression is largely uncoupled from changes in DNA methylation in plants devoid of MORC function. However, we also uncover a requirement for MORC in both DNA methylation and silencing at a small but distinct subset of RNA-directed DNA methylation target loci. These regions are characterized by poised transcriptional potential and a low density of sites for symmetric cytosine methylation. These results provide insight into the biological function of MORC proteins in higher eukaryotes.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Arabidopsis/genética , Epigênese Genética , Transcrição Gênica , Adenosina Trifosfatases/biossíntese , Arabidopsis/genética , Proteínas de Arabidopsis/biossíntese , Metilação de DNA/genética , Regulação da Expressão Gênica de Plantas , Família Multigênica/genética , Fenótipo
3.
Proc Natl Acad Sci U S A ; 111(20): 7474-9, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24799676

RESUMO

Epigenetic gene silencing is of central importance to maintain genome integrity and is mediated by an elaborate interplay between DNA methylation, histone posttranslational modifications, and chromatin remodeling complexes. DNA methylation and repressive histone marks usually correlate with transcriptionally silent heterochromatin, however there are exceptions to this relationship. In Arabidopsis, mutation of Morpheus Molecule 1 (MOM1) causes transcriptional derepression of heterochromatin independently of changes in DNA methylation. More recently, two Arabidopsis homologues of mouse microrchidia (MORC) genes have also been implicated in gene silencing and heterochromatin condensation without altering genome-wide DNA methylation patterns. In this study, we show that Arabidopsis microrchidia (AtMORC6) physically interacts with AtMORC1 and with its close homologue, AtMORC2, in two mutually exclusive protein complexes. RNA-sequencing analyses of high-order mutants indicate that AtMORC1 and AtMORC2 act redundantly to repress a common set of loci. We also examined genetic interactions between AtMORC6 and MOM1 pathways. Although AtMORC6 and MOM1 control the silencing of a very similar set of genomic loci, we observed synergistic transcriptional regulation in the mom1/atmorc6 double mutant, suggesting that these epigenetic regulators act mainly by different silencing mechanisms.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Adenosina Trifosfatases/genética , Proteínas de Arabidopsis/química , Metilação de DNA , Elementos de DNA Transponíveis , Epigênese Genética , Genótipo , Heterocromatina/metabolismo , Mutação , Ligação Proteica
7.
Life Sci Alliance ; 6(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36732020

RESUMO

Silencing of transposable elements (TEs) is an essential process to maintain genomic integrity within the cell. In Arabidopsis, together with canonical epigenetic pathways such as DNA methylation and modifications of histone tails, the plant mobile domain (PMD) proteins MAINTENANCE OF MERISTEMS (MAIN) and MAIN-LIKE 1 (MAIL1) are involved in TE silencing. In addition, the MICRORCHIDIA (MORC) ATPases, including MORC1, are important cellular factors repressing TEs. Here, we describe the genetic interaction and connection between the PMD and MORC pathways by showing that MORC1 expression is impaired in main and mail1 mutants. Transcriptomic analyses of higher order mutant plants combining pmd and morc1 mutations, and pmd mutants in which MORC1 expression is restored, show that the silencing defects of a subset of TEs in pmd mutants are most likely the consequence of MORC1 down-regulation. Besides, a significant fraction of up-regulated TEs in pmd mutants are not targeted by the MORC1 pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Inativação Gênica , Metilação de DNA/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Histonas/metabolismo , Proteínas Nucleares/genética
8.
EMBO J ; 27(15): 2102-12, 2008 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-18615098

RESUMO

Replication of Cauliflower mosaic virus (CaMV), a plant double-stranded DNA virus, requires the viral translational transactivator protein P6. Although P6 is known to form cytoplasmic inclusion bodies (viroplasms) so far considered essential for virus biology, a fraction of the protein is also present in the nucleus. Here, we report that monomeric P6 is imported into the nucleus through two importin-alpha-dependent nuclear localization signals, and show that this process is mandatory for CaMV infectivity and is independent of translational transactivation and viroplasm formation. One nuclear function of P6 is to suppress RNA silencing, a gene regulation mechanism with antiviral roles, commonly counteracted by dedicated viral suppressor proteins (viral silencing suppressors; VSRs). Transgenic P6 expression in Arabidopsis is genetically equivalent to inactivating the nuclear protein DRB4 that facilitates the activity of the major plant antiviral silencing factor DCL4. We further show that a fraction of P6 immunoprecipitates with DRB4 in CaMV-infected cells. This study identifies both genetic and physical interactions between a VSR to a host RNA silencing component, and highlights the importance of subcellular compartmentalization in VSR function.


Assuntos
Arabidopsis/fisiologia , Caulimovirus/fisiologia , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/fisiologia , Interferência de RNA/fisiologia , Proteínas de Ligação a RNA/fisiologia , Proteínas Virais/fisiologia , Transporte Ativo do Núcleo Celular/fisiologia , Sequência de Aminoácidos , Arabidopsis/virologia , Citoplasma/metabolismo , Corpos de Inclusão Viral/fisiologia , Dados de Sequência Molecular , Mutação , Sinais de Localização Nuclear/metabolismo , Proteínas de Ligação a RNA/genética , Ribonuclease III , Ribonucleases/fisiologia , Replicação Viral/fisiologia
9.
EMBO Rep ; 11(12): 950-5, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21052090

RESUMO

Histone demethylases-both lysine-specific demethylase 1 (LSD1) and Jumonji-C (JmjC) domain-containing proteins-are broadly implicated in the regulation of chromatin-dependent processes. In Arabidopsis thaliana, histone marks directly affect DNA methylation, and mutations in LSD1 homologues show reduced DNA methylation at some loci. We screened transfer DNA mutations in genes encoding JmjC domains for defects in DNA methylation. Mutations in jmj14 result in reduced DNA methylation in non-CG contexts at targets of DRM2 (domains rearranged methyltransferase 2)-mediated RNA-directed DNA methylation (RdDM), which is associated with an increase in H3K4m3. Unlike other components of RdDM, JMJ14 is not required for de novo methylation of a transgene, suggesting that JMJ14 is specifically involved in the maintenance phase of DRM2-mediated RdDM.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Metilação de DNA/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Metiltransferases/metabolismo , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Teste de Complementação Genética , Loci Gênicos/genética , Histonas/metabolismo , Lisina/metabolismo , Modelos Biológicos , Mutação/genética , RNA de Plantas/metabolismo
10.
Cells ; 10(11)2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34831175

RESUMO

Transposable elements (TEs) are self-replicating DNA elements that constitute major fractions of eukaryote genomes. Their ability to transpose can modify the genome structure with potentially deleterious effects. To repress TE activity, host cells have developed numerous strategies, including epigenetic pathways, such as DNA methylation or histone modifications. Although TE neo-insertions are mostly deleterious or neutral, they can become advantageous for the host under specific circumstances. The phenomenon leading to the appropriation of TE-derived sequences by the host is known as TE exaptation or co-option. TE exaptation can be of different natures, through the production of coding or non-coding DNA sequences with ultimately an adaptive benefit for the host. In this review, we first give new insights into the silencing pathways controlling TE activity. We then discuss a model to explain how, under specific environmental conditions, TEs are unleashed, leading to a TE burst and neo-insertions, with potential benefits for the host. Finally, we review our current knowledge of coding and non-coding TE exaptation by providing several examples in various organisms and describing a method to identify TE co-option events.


Assuntos
Elementos de DNA Transponíveis/genética , Evolução Molecular , Epigênese Genética , Éxons/genética , Modelos Genéticos , Fases de Leitura Aberta/genética
12.
Nat Commun ; 7: 11640, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27291711

RESUMO

DNA methylation is an epigenetic mechanism that has important functions in transcriptional silencing and is associated with repressive histone methylation (H3K9me). To further investigate silencing mechanisms, we screened a mutagenized Arabidopsis thaliana population for expression of SDCpro-GFP, redundantly controlled by DNA methyltransferases DRM2 and CMT3. Here, we identify the hypomorphic mutant mthfd1-1, carrying a mutation (R175Q) in the cytoplasmic bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase (MTHFD1). Decreased levels of oxidized tetrahydrofolates in mthfd1-1 and lethality of loss-of-function demonstrate the essential enzymatic role of MTHFD1 in Arabidopsis. Accumulation of homocysteine and S-adenosylhomocysteine, genome-wide DNA hypomethylation, loss of H3K9me and transposon derepression indicate that S-adenosylmethionine-dependent transmethylation is inhibited in mthfd1-1. Comparative analysis of DNA methylation revealed that the CMT3 and CMT2 pathways involving positive feedback with H3K9me are mostly affected. Our work highlights the sensitivity of epigenetic networks to one-carbon metabolism due to their common S-adenosylmethionine-dependent transmethylation and has implications for human MTHFD1-associated diseases.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Metilação de DNA/genética , Meteniltetra-Hidrofolato Cicloidrolase/metabolismo , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Proteínas de Arabidopsis/genética , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Desmetilação do DNA , Epigênese Genética , Ácido Fólico/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Inativação Gênica , Proteínas de Fluorescência Verde/metabolismo , Histonas/metabolismo , Homeostase/efeitos dos fármacos , Lisina/metabolismo , Meteniltetra-Hidrofolato Cicloidrolase/genética , Metionina/farmacologia , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Modelos Biológicos , Mutação/genética , Transporte Proteico/efeitos dos fármacos , S-Adenosilmetionina/metabolismo , Tetra-Hidrofolatos/farmacologia
13.
Nat Commun ; 5: 5795, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25503965

RESUMO

The Microrchidia (Morc) family of GHKL ATPases are present in a wide variety of prokaryotic and eukaryotic organisms but are of largely unknown function. Genetic screens in Arabidopsis thaliana have identified Morc genes as important repressors of transposons and other DNA-methylated and silent genes. MORC1-deficient mice were previously found to display male-specific germ cell loss and infertility. Here we show that MORC1 is responsible for transposon repression in the male germline in a pattern that is similar to that observed for germ cells deficient for the DNA methyltransferase homologue DNMT3L. Morc1 mutants show highly localized defects in the establishment of DNA methylation at specific classes of transposons, and this is associated with failed transposon silencing at these sites. Our results identify MORC1 as an important new regulator of the epigenetic landscape of male germ cells during the period of global de novo methylation.


Assuntos
Elementos de DNA Transponíveis , Epigênese Genética , Proteínas Nucleares/genética , Espermatozoides/metabolismo , Animais , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Embrião de Mamíferos , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espermatozoides/citologia , Espermatozoides/crescimento & desenvolvimento , Fatores de Tempo
14.
Science ; 336(6087): 1448-51, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22555433

RESUMO

Transposable elements (TEs) and DNA repeats are commonly targeted by DNA and histone methylation to achieve epigenetic gene silencing. We isolated mutations in two Arabidopsis genes, AtMORC1 and AtMORC6, which cause derepression of DNA-methylated genes and TEs but no losses of DNA or histone methylation. AtMORC1 and AtMORC6 are members of the conserved Microrchidia (MORC) adenosine triphosphatase (ATPase) family, which are predicted to catalyze alterations in chromosome superstructure. The atmorc1 and atmorc6 mutants show decondensation of pericentromeric heterochromatin, increased interaction of pericentromeric regions with the rest of the genome, and transcriptional defects that are largely restricted to loci residing in pericentromeric regions. Knockdown of the single MORC homolog in Caenorhabditis elegans also impairs transgene silencing. We propose that the MORC ATPases are conserved regulators of gene silencing in eukaryotes.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Inativação Gênica , Heterocromatina/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Animais , Arabidopsis/enzimologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Centrômero , Metilação de DNA , Elementos de DNA Transponíveis , Genes de Plantas , Heterocromatina/ultraestrutura , Histonas/metabolismo , Metilação , Mutação , RNA Interferente Pequeno/metabolismo , Transcrição Gênica , Transgenes , Regulação para Cima
16.
RNA ; 13(8): 1268-78, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17592042

RESUMO

In plants, worms, and fungi, RNA-dependent RNA polymerases (RDRs) amplify the production of short-interfering RNAs (siRNAs) that mediate RNA silencing. In Arabidopsis, RDR6 is thought to copy endogenous and exogenous RNA templates into double-stranded RNAs (dsRNAs), which are subsequently processed into siRNAs by one or several of the four Dicer-like enzymes (DCL1-->4). This reaction produces secondary siRNAs corresponding to sequences outside the primary targeted regions of a transcript, a phenomenon called transitivity. One recognized role of RDR6 is to strengthen the RNA silencing response mounted by plants against viruses. Accordingly, suppressor proteins deployed by viruses inhibit this defense. However, interactions between silencing suppressors and RDR6 have not yet been documented. Additionally, the mechanism underlying transitivity remains poorly understood. Here, we report how several viral silencing suppressors inhibit the RDR6-dependent amplification of virus-induced and transgene-induced gene silencing. Viral suppression of primary siRNA accumulation shows that transitivity can be initiated with minute amounts of DCL4-dependent 21-nucleotide (nt)-long siRNAs, whereas DCL3-dependent 24-nt siRNAs appear dispensable for this process. We further show that unidirectional (3-->5') transitivity requires the hierarchical and redundant functions of DCL4 and DCL2 acting downstream from RDR6 to produce 21- and 22-nt-long siRNAs, respectively. The 3-->5' transitive reaction is likely to be processive over >750 nt, with secondary siRNA production progressively decreasing as the reaction proceeds toward the 5'-proximal region of target transcripts. Finally, we show that target cleavage by a primary small RNA and 3-->5' transitivity can be genetically uncoupled, and we provide in vivo evidence supporting a key role for priming in this specific reaction.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ciclo Celular/metabolismo , Interferência de RNA , RNA Polimerase Dependente de RNA/metabolismo , Ribonuclease III/metabolismo , Ribonucleases/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Arabidopsis/metabolismo , Vírus de Plantas/química , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/metabolismo
17.
Proc Natl Acad Sci U S A ; 103(51): 19593-8, 2006 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-17164336

RESUMO

RNA silencing is an ancient mechanism of gene regulation with important antiviral roles in plants and insects. Although induction of RNA silencing by RNA viruses has been well documented in plants, the interactions between DNA viruses and the host silencing machinery remain poorly understood. We investigate this question with cauliflower mosaic virus (CaMV), a dsDNA virus that expresses its genome through the polycistronic 35S RNA, which carries an unusually extensive secondary structure known as translational leader. We show that CaMV-derived siRNAs accumulate in turnip- and Arabidopsis-infected plants and that the leader is a major, albeit not exclusive, source for those molecules. Biogenesis of leader-derived siRNA requires the coordinated and hierarchical action of the four Arabidopsis Dicer-like (DCL) proteins. Our study also uncovers a "facilitating" role exerted by the microRNA biosynthetic enzyme DCL1 on accumulation of DCL2-, DCL3-, and DCL4-dependent siRNAs derived from the 35S leader. This feature of DCL1 defines a small RNA biosynthetic pathway that might have relevance for endogenous gene regulation. Several leader-derived siRNAs were found to bear near-perfect sequence complementarity to Arabidopsis transcripts, and, using a sensor transgene, we provide direct evidence that at least one of those molecules acts as a bona fide siRNA in infected turnip. Extensive bioinformatics searches identified >100 transcripts potentially targeted by CaMV-derived siRNAs, several of which are effectively down-regulated during infection. The implications of virus-directed silencing of host gene expression are discussed.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Brassica napus/genética , Caulimovirus/genética , Proteínas de Ciclo Celular/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Ribonuclease III/metabolismo , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , Sequência de Bases , Northern Blotting , Brassica napus/virologia , Proteínas de Ciclo Celular/genética , Biologia Computacional , Immunoblotting , Dados de Sequência Molecular , Ribonuclease III/genética
18.
Mol Plant Pathol ; 5(1): 71-82, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20565584

RESUMO

SUMMARY RNA silencing is a conserved eukaryotic pathway involved in suppression of gene expression via sequence-specific interactions that are mediated by nt 21-24-long RNA molecules. In plants, cell-autonomous and noncell-autonomous steps of RNA silencing form the basis of an elaborate immune system that is activated by, and targeted against, viruses. As a counter-defensive strategy, viruses have evolved suppressor proteins that inhibit various stages of the silencing process. These suppressors are diverse in sequence and structure and appear to be encoded by virtually any type of plant viruses. In this review, we consider the impact of silencing suppression on virus infections and its possible contribution to symptom development. We examine the presumed mode of action of some silencing suppressors and discuss their value as molecular probes of the RNA silencing mechanism. Finally, the biotechnological applications of silencing suppression are considered.

19.
EMBO J ; 22(17): 4523-33, 2003 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12941703

RESUMO

One manifestation of RNA silencing, known as post-transcriptional gene silencing (PTGS) in plants and RNA interference (RNAi) in animals, is a nucleotide sequence-specific RNA turnover mechanism with the outstanding property of propagating throughout the organism, most likely via movement of nucleic acids. Here, the cell-to-cell movement of RNA silencing in plants is investigated. We show that a short-distance movement process, once initiated from a small group of cells, can spread over a limited and nearly constant number of cells, independent of the presence of homologous transcripts. There is also a long-range cell-to-cell movement process that occurs as a relay amplification, which requires the combined activity of SDE1, a putative RNA-dependent RNA polymerase, and SDE3, a putative RNA helicase. Extensive and limited cell-to-cell movements of silencing are triggered by the same molecules, occur within the same tissues and likely recruit the same plasmodesmata channels. We propose that they are in fact manifestations of the same process, and that extensive cell-to-cell movement of RNA silencing results from re-iterated short-distance signalling events. The likely nature of the nucleic acids involved is presented.


Assuntos
Plantas/genética , Interferência de RNA , Animais , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Comunicação Celular/genética , Genes de Plantas , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Modelos Genéticos , Células Vegetais , Plantas/metabolismo , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhizobium/genética , Supressão Genética , Nicotiana/citologia , Nicotiana/genética , Nicotiana/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA