Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Hum Mol Genet ; 24(22): 6278-92, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26307083

RESUMO

Dominant mutations in TPM3, encoding α-tropomyosinslow, cause a congenital myopathy characterized by generalized muscle weakness. Here, we used a multidisciplinary approach to investigate the mechanism of muscle dysfunction in 12 TPM3-myopathy patients. We confirm that slow myofibre hypotrophy is a diagnostic hallmark of TPM3-myopathy, and is commonly accompanied by skewing of fibre-type ratios (either slow or fast fibre predominance). Patient muscle contained normal ratios of the three tropomyosin isoforms and normal fibre-type expression of myosins and troponins. Using 2D-PAGE, we demonstrate that mutant α-tropomyosinslow was expressed, suggesting muscle dysfunction is due to a dominant-negative effect of mutant protein on muscle contraction. Molecular modelling suggested mutant α-tropomyosinslow likely impacts actin-tropomyosin interactions and, indeed, co-sedimentation assays showed reduced binding of mutant α-tropomyosinslow (R168C) to filamentous actin. Single fibre contractility studies of patient myofibres revealed marked slow myofibre specific abnormalities. At saturating [Ca(2+)] (pCa 4.5), patient slow fibres produced only 63% of the contractile force produced in control slow fibres and had reduced acto-myosin cross-bridge cycling kinetics. Importantly, due to reduced Ca(2+)-sensitivity, at sub-saturating [Ca(2+)] (pCa 6, levels typically released during in vivo contraction) patient slow fibres produced only 26% of the force generated by control slow fibres. Thus, weakness in TPM3-myopathy patients can be directly attributed to reduced slow fibre force at physiological [Ca(2+)], and impaired acto-myosin cross-bridge cycling kinetics. Fast myofibres are spared; however, they appear to be unable to compensate for slow fibre dysfunction. Abnormal Ca(2+)-sensitivity in TPM3-myopathy patients suggests Ca(2+)-sensitizing drugs may represent a useful treatment for this condition.


Assuntos
Fibras Musculares de Contração Lenta/metabolismo , Atrofia Muscular/metabolismo , Doenças Musculares/metabolismo , Miosinas/metabolismo , Tropomiosina/genética , Actinas/genética , Actinas/metabolismo , Adolescente , Adulto , Cálcio/metabolismo , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Contração Muscular/fisiologia , Debilidade Muscular/genética , Debilidade Muscular/metabolismo , Atrofia Muscular/genética , Doenças Musculares/genética , Mutação , Miosinas/genética , Isoformas de Proteínas , Tropomiosina/metabolismo
2.
Calcif Tissue Int ; 97(6): 602-10, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26340892

RESUMO

Vitamin D deficiency is associated with muscle weakness, pain, and atrophy. Serum vitamin D predicts muscle strength and age-related muscle changes. However, precise mechanisms by which vitamin D affects skeletal muscle are unclear. To address this question, this study characterizes the muscle phenotype and gene expression of mice with deletion of vitamin D receptor (VDRKO) or diet-induced vitamin D deficiency. VDRKO and vitamin D-deficient mice had significantly weaker grip strength than their controls. Weakness progressed with age and duration of vitamin D deficiency, respectively. Histological assessment showed that VDRKO mice had muscle fibers that were significantly smaller in size and displayed hyper-nuclearity. Real-time PCR also indicated muscle developmental changes in VDRKO mice with dysregulation of myogenic regulatory factors (MRFs) and increased myostatin in quadriceps muscle (>2-fold). Vitamin D-deficient mice also showed increases in myostatin and the atrophy marker E3-ubiqutin ligase MuRF1. As a potential explanation for grip strength weakness, both groups of mice had down-regulation of genes encoding calcium-handling and sarco-endoplasmic reticulum calcium transport ATPase (Serca) channels. This is the first report of reduced strength, morphological, and gene expression changes in VDRKO and vitamin D-deficient mice where confounding by calcium, magnesium, and phosphate have been excluded by direct testing. Although suggested in earlier in vitro work, this study is the first to report an in vivo association between vitamin D, myostatin, and the regulation of muscle mass. These findings support a direct role for vitamin D in muscle function and corroborate earlier work on the presence of VDR in this tissue.


Assuntos
Força da Mão , Fibras Musculares Esqueléticas/patologia , Miostatina/biossíntese , Receptores de Calcitriol/deficiência , Deficiência de Vitamina D/fisiopatologia , Animais , Modelos Animais de Doenças , Força da Mão/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibras Musculares Esqueléticas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Deficiência de Vitamina D/metabolismo
3.
J Cell Physiol ; 229(11): 1753-64, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24664951

RESUMO

Grb10 is an intracellular adaptor protein which binds directly to several growth factor receptors, including those for insulin and insulin-like growth factor receptor-1 (IGF-1), and negatively regulates their actions. Grb10-ablated (Grb10(-/-) ) mice exhibit improved whole body glucose homeostasis and an increase in muscle mass associated specifically with an increase in myofiber number. This suggests that Grb10 may act as a negative regulator of myogenesis. In this study, we investigated in vitro, the molecular mechanisms underlying the increase in muscle mass and the improved glucose metabolism. Primary muscle cells isolated from Grb10(-/-) mice exhibited increased rates of proliferation and differentiation compared to primary cells isolated from wild-type mice. The improved proliferation capacity was associated with an enhanced phosphorylation of Akt and ERK in the basal state and changes in the expression of key cell cycle progression markers involved in regulating transition of cells from the G1 to S phase (e.g., retinoblastoma (Rb) and p21). The absence of Grb10 also promoted a faster transition to a myogenin positive, differentiated state. Glucose uptake was higher in Grb10(-/-) primary myotubes in the basal state and was associated with enhanced insulin signaling and an increase in GLUT4 translocation to the plasma membrane. These data demonstrate an important role for Grb10 as a link between muscle growth and metabolism with therapeutic implications for diseases, such as muscle wasting and type 2 diabetes.


Assuntos
Diferenciação Celular , Membrana Celular/metabolismo , Proteína Adaptadora GRB10/metabolismo , Deleção de Genes , Células Musculares/citologia , Células Musculares/metabolismo , Animais , Biomarcadores/metabolismo , Antígeno CD56/metabolismo , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Separação Celular , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína Adaptadora GRB10/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Insulina/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Células Musculares/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/efeitos dos fármacos , Mioblastos Esqueléticos/enzimologia , Miogenina/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Células Satélites de Músculo Esquelético/metabolismo
4.
Brain ; 136(Pt 2): 494-507, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23378224

RESUMO

Mutations in the TPM2 gene, which encodes ß-tropomyosin, are an established cause of several congenital skeletal myopathies and distal arthrogryposis. We have identified a TPM2 mutation, p.K7del, in five unrelated families with nemaline myopathy and a consistent distinctive clinical phenotype. Patients develop large joint contractures during childhood, followed by slowly progressive skeletal muscle weakness during adulthood. The TPM2 p.K7del mutation results in the loss of a highly conserved lysine residue near the N-terminus of ß-tropomyosin, which is predicted to disrupt head-to-tail polymerization of tropomyosin. Recombinant K7del-ß-tropomyosin incorporates poorly into sarcomeres in C2C12 myotubes and has a reduced affinity for actin. Two-dimensional gel electrophoresis of patient muscle and primary patient cultured myotubes showed that mutant protein is expressed but incorporates poorly into sarcomeres and likely accumulates in nemaline rods. In vitro studies using recombinant K7del-ß-tropomyosin and force measurements from single dissected patient myofibres showed increased myofilament calcium sensitivity. Together these data indicate that p.K7del is a common recurrent TPM2 mutation associated with mild nemaline myopathy. The p.K7del mutation likely disrupts head-to-tail polymerization of tropomyosin, which impairs incorporation into sarcomeres and also affects the equilibrium of the troponin/tropomyosin-dependent calcium switch of muscle. Joint contractures may stem from chronic muscle hypercontraction due to increased myofibrillar calcium sensitivity while declining strength in adulthood likely arises from other mechanisms, such as myofibre decompensation and fatty infiltration. These results suggest that patients may benefit from therapies that reduce skeletal muscle calcium sensitivity, and we highlight late muscle decompensation as an important cause of morbidity.


Assuntos
Cálcio/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Mutação/fisiologia , Miopatias da Nemalina/genética , Miopatias da Nemalina/metabolismo , Tropomiosina/genética , Adolescente , Adulto , Idoso , Sequência de Aminoácidos , Animais , Linhagem Celular , Células Cultivadas , Galinhas , Feminino , Estudos de Associação Genética/métodos , Triagem de Portadores Genéticos , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Linhagem , Ratos , Prevenção Secundária , Suínos
5.
Curr Osteoporos Rep ; 12(2): 142-53, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24633910

RESUMO

Musculoskeletal diseases are highly prevalent with staggering annual health care costs across the globe. The combined wasting of muscle (sarcopenia) and bone (osteoporosis)-both in normal aging and pathologic states-can lead to vastly compounded risk for fracture in patients. Until now, our therapeutic approach to the prevention of such fractures has focused solely on bone, but our increasing understanding of the interconnected biology of muscle and bone has begun to shift our treatment paradigm for musculoskeletal disease. Targeting pathways that centrally regulate both bone and muscle (eg, GH/IGF-1, sex steroids, etc.) and newly emerging pathways that might facilitate communication between these 2 tissues (eg, activin/myostatin) might allow a greater therapeutic benefit and/or previously unanticipated means by which to treat these frail patients and prevent fracture. In this review, we will discuss a number of therapies currently under development that aim to treat musculoskeletal disease in precisely such a holistic fashion.


Assuntos
Androgênios/uso terapêutico , Conservadores da Densidade Óssea/uso terapêutico , Fraturas Ósseas/prevenção & controle , Hormônio Liberador de Hormônio do Crescimento/uso terapêutico , Hormônios/uso terapêutico , Hormônio do Crescimento Humano/uso terapêutico , Osteoporose/tratamento farmacológico , Sarcopenia/tratamento farmacológico , Acetamidas/uso terapêutico , Amidas/uso terapêutico , Aminofenóis/uso terapêutico , Anilidas , Anticorpos/uso terapêutico , Terapia por Exercício , Fraturas Ósseas/etiologia , Humanos , Osteoporose/complicações , Osteoporose/terapia , Fraturas por Osteoporose/prevenção & controle , Sarcopenia/complicações , Sarcopenia/terapia , Vitamina D/uso terapêutico
6.
FASEB J ; 26(9): 3658-69, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22623587

RESUMO

Grb10 is an intracellular adaptor protein that acts as a negative regulator of insulin and insulin-like growth factor 1 (IGF1) receptors. Since global deletion of Grb10 in mice causes hypermuscularity, we have characterized the skeletal muscle physiology underlying this phenotype. Compared to wild-type (WT) controls, adult mice deficient in Grb10 have elevated body mass and muscle mass throughout adulthood, up to 12 mo of age. The muscle enlargement is not due to increased myofiber size, but rather an increase in myofiber number (142% of WT, P<0.01). There is no change in myofiber type proportions between WT and Grb10-deficient muscles, nor are the metabolic properties of the muscles altered on Grb10 deletion. Notably, the weight and cross-sectional area of hindlimbs from neonatal mice are increased in Grb10-deficient animals (198 and 137% of WT, respectively, both P<0.001). Functional gene signatures for myogenic signaling and proliferation are up-regulated in Grb10-deficient neonatal muscle. Our findings indicate that Grb10 plays a previously unrecognized role in regulating the development of fiber number during murine embryonic growth. In addition, Grb10-ablated muscle from adult mice shows coordinate gene changes that oppose those of muscle wasting pathologies, highlighting Grb10 as a potential therapeutic target for these conditions.


Assuntos
Proteína Adaptadora GRB10/fisiologia , Fibras Musculares Esqueléticas/citologia , Músculo Esquelético/crescimento & desenvolvimento , Animais , Imunofluorescência , Proteína Adaptadora GRB10/genética , Expressão Gênica/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo
7.
J Neuropathol Exp Neurol ; 67(9): 867-77, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18716557

RESUMO

The mechanism of muscle weakness was investigated in an Australian family with an M9R mutation in TPM3 (alpha-tropomyosin(slow)). Detailed protein analyses of 5 muscle samples from 2 patients showed that nemaline bodies are restricted to atrophied Type 1 (slow) fibers in which the TPM3 gene is expressed. Developmental expression studies showed that alpha-tropomyosin(slow) is not expressed at significant levels until after birth, thereby likely explaining the childhood (rather than congenital) disease onset in TPM3 nemaline myopathy. Isoelectric focusing demonstrated that alpha-tropomyosin(slow) dimers, composed of equal ratios of wild-type and M9R-alpha-tropomyosin(slow), are the dominant tropomyosin species in 3 separate muscle groups from an affected patient. These findings suggest that myopathy-related slow fiber predominance likely contributes to the severity of weakness in TPM3 nemaline myopathy because of increased proportions of fibers that express the mutant protein. Using recombinant proteins and far Western blot, we demonstrated a higher affinity of tropomodulin for alpha-tropomyosin(slow) compared with beta-tropomyosin; the M9R substitution within alpha-tropomyosin(slow) greatly reduced this interaction. Finally, transfection of the M9R mutated and wild-type alpha-tropomyosin(slow) into myoblasts revealed reduced incorporation into stress fibers and disruption of the filamentous actin network by the mutant protein. Collectively, these results provide insights into the clinical features and pathogenesis of M9R-TPM3 nemaline myopathy.


Assuntos
Músculo Esquelético/patologia , Miopatias da Nemalina/genética , Miopatias da Nemalina/metabolismo , Miopatias da Nemalina/patologia , Tropomiosina/genética , Adulto , Western Blotting , Pré-Escolar , Feminino , Feto , Humanos , Imuno-Histoquímica , Lactente , Recém-Nascido , Focalização Isoelétrica , Pessoa de Meia-Idade , Fibras Musculares de Contração Lenta/patologia , Mutação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Tropomodulina/metabolismo , Tropomiosina/metabolismo
8.
Endocrinology ; 159(3): 1339-1351, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29370381

RESUMO

Grb10 is an adaptor-type signaling protein most highly expressed in tissues involved in insulin action and glucose metabolism, such as muscle, pancreas, and adipose. Germline deletion of Grb10 in mice creates a phenotype with larger muscles and improved glucose homeostasis. However, it has not been determined whether Grb10 ablation specifically in muscle is sufficient to induce hypermuscularity or affect whole body glucose metabolism. In this study we generated muscle-specific Grb10-deficient mice (Grb10-mKO) by crossing Grb10flox/flox mice with mice expressing Cre recombinase under control of the human α-skeletal actin promoter. One-year-old Grb10-mKO mice had enlarged muscles, with greater cross-sectional area of fibers compared with wild-type (WT) mice. This degree of hypermuscularity did not affect whole body glucose homeostasis under basal conditions. However, hyperinsulinemic/euglycemic clamp studies revealed that Grb10-mKO mice had greater glucose uptake into muscles compared with WT mice. Insulin signaling was increased at the level of phospho-Akt in muscle of Grb10-mKO mice compared with WT mice, consistent with a role of Grb10 as a modulator of proximal insulin receptor signaling. We conclude that ablation of Grb10 in muscle is sufficient to affect muscle size and metabolism, supporting an important role for this protein in growth and metabolic pathways.


Assuntos
Proteína Adaptadora GRB10/deficiência , Proteína Adaptadora GRB10/fisiologia , Glucose/metabolismo , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/metabolismo , Animais , Glicemia/análise , Cruzamentos Genéticos , Feminino , Proteína Adaptadora GRB10/genética , Deleção de Genes , Técnica Clamp de Glucose , Homeostase , Insulina/sangue , Insulina/farmacologia , Integrases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
9.
Endocrinology ; 155(2): 347-57, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24280059

RESUMO

Vitamin D deficiency is linked to a range of muscle disorders including myalgia, muscle weakness, and falls. Humans with severe vitamin D deficiency and mice with transgenic vitamin D receptor (VDR) ablation have muscle fiber atrophy. However, molecular mechanisms by which vitamin D influences muscle function and fiber size remain unclear. A central question is whether VDR is expressed in skeletal muscle and is able to regulate transcription at this site. To address this, we examined key molecular and morphologic changes in C2C12 cells treated with 25-hydroxyvitamin D (25OHD) and 1,25-dihydroxyvitamin D (1,25(OH)(2)D). As well as stimulating VDR expression, 25(OH)D and 1,25(OH)(2)D dose-dependently increased expression of the classic vitamin D target cytochrome P450, family 24, subfamily A, polypeptide 1 (CYP24A1), demonstrating the presence of an autoregulatory vitamin D-endocrine system in these cells. Luciferase reporter studies demonstrated that cytochrome P450, family 27, subfamily B, polypeptide 1 (CYP27B1) was functional in these cells. Both 25OHD and 1,25(OH)(2)D altered C2C12 proliferation and differentiation. These effects were related to the increased expression of genes involved in G(0)/G(1) arrest (retinoblastoma protein [Rb], 1.3-fold; ATM, 1.5-fold, both P < .05), downregulation of mRNAs involved in G(1)/S transition, including myc and cyclin-D1 (0.7- and 0.8-fold, both P < .05) and reduced phosphorylation of Rb protein (0.3-fold, P < .005). After serum depletion, 1,25(OH)(2)D (100nM) suppressed myotube formation with decreased mRNAs for key myogenic regulatory factors (myogenin, 0.5-fold; myf5, 0.4-fold, P < .005) but led to a 1.8-fold increase in cross-sectional size of individual myotubes associated with markedly decreased myostatin expression (0.2-fold, P < .005). These data show that vitamin D signaling alters gene expression in C2C12 cells, with effects on proliferation, differentiation, and myotube size.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Transdução de Sinais/fisiologia , Vitamina D/análogos & derivados , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/fisiologia , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Receptores de Calcitriol/metabolismo , Transdução de Sinais/efeitos dos fármacos , Vitamina D/metabolismo , Vitamina D/farmacologia
10.
Mol Metab ; 3(6): 652-63, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25161888

RESUMO

Defective control of lipid metabolism leading to lipotoxicity causes insulin resistance in skeletal muscle, a major factor leading to diabetes. Here, we demonstrate that perilipin (PLIN) 5 is required to couple intramyocellular triacylglycerol lipolysis with the metabolic demand for fatty acids. PLIN5 ablation depleted triacylglycerol stores but increased sphingolipids including ceramide, hydroxylceramides and sphingomyelin. We generated perilipin 5 (Plin5)(-/-) mice to determine the functional significance of PLIN5 in metabolic control and insulin action. Loss of PLIN5 had no effect on body weight, feeding or adiposity but increased whole-body carbohydrate oxidation. Plin5 (-/-) mice developed skeletal muscle insulin resistance, which was associated with ceramide accumulation. Liver insulin sensitivity was improved in Plin5 (-/-) mice, indicating tissue-specific effects of PLIN5 on insulin action. We conclude that PLIN5 plays a critical role in coordinating skeletal muscle triacylglycerol metabolism, which impacts sphingolipid metabolism, and is requisite for the maintenance of skeletal muscle insulin action.

11.
Endocrinology ; 155(9): 3227-37, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24949660

RESUMO

Vitamin D deficiency is associated with a range of muscle disorders, including myalgia, muscle weakness, and falls. In humans, polymorphisms of the vitamin D receptor (VDR) gene are associated with variations in muscle strength, and in mice, genetic ablation of VDR results in muscle fiber atrophy and motor deficits. However, mechanisms by which VDR regulates muscle function and morphology remain unclear. A crucial question is whether VDR is expressed in skeletal muscle and directly alters muscle physiology. Using PCR, Western blotting, and immunohistochemistry (VDR-D6 antibody), we detected VDR in murine quadriceps muscle. Detection by Western blotting was dependent on the use of hyperosmolar lysis buffer. Levels of VDR in muscle were low compared with duodenum and dropped progressively with age. Two in vitro models, C2C12 and primary myotubes, displayed dose- and time-dependent increases in expression of both VDR and its target gene CYP24A1 after 1,25(OH)2D (1,25 dihydroxyvitamin D) treatment. Primary myotubes also expressed functional CYP27B1 as demonstrated by luciferase reporter studies, supporting an autoregulatory vitamin D-endocrine system in muscle. Myofibers isolated from mice retained tritiated 25-hydroxyvitamin D3, and this increased after 3 hours of pretreatment with 1,25(OH)2D (0.1 nM). No such response was seen in myofibers from VDR knockout mice. In summary, VDR is expressed in skeletal muscle, and vitamin D regulates gene expression and modulates ligand-dependent uptake of 25-hydroxyvitamin D3 in primary myofibers.


Assuntos
Músculo Esquelético/metabolismo , Miofibrilas/metabolismo , Receptores de Calcitriol/metabolismo , Deficiência de Vitamina D/metabolismo , Vitamina D/análogos & derivados , Animais , Transporte Biológico , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Calcitriol/genética , Vitamina D/metabolismo , Deficiência de Vitamina D/genética
12.
J Neuropathol Exp Neurol ; 69(5): 429-41, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20418783

RESUMO

Rods are the pathological hallmark of nemaline myopathy, but they can also occur as a secondary phenomenon in other disorders, including mitochondrial myopathies such as complex I deficiency. The mechanisms of rod formation are not well understood, particularly when rods occur in diverse disorders with very different structural and metabolic defects. We compared the characteristics of rods associated with abnormalities in structural components of skeletal muscle thin filament (3 mutations in the skeletal actin gene ACTA1) with those of rods induced by the metabolic cell stress of adenosine triphosphate depletion. C2C12 and NIH/3T3 cell culture models and immunocytochemistry were used to study rod composition and conformation. Fluorescent recovery after photobleaching was used to measure actin dynamics inside the rods. We demonstrate that not all rods are the same. Rods formed under different conditions contain a unique fingerprint of actin-binding proteins (cofilin and alpha-actinin) and display differences in actin dynamics that are specific to the mutation, to the cellular location of the rods (intranuclear vs cytoplasmic), and/or to the underlying pathological process (i.e. mutant actin or adenosine triphosphate depletion). Thus, rods likely represent a common morphological end point of a variety of different pathological processes, either structural or metabolic.


Assuntos
Actinina/metabolismo , Cofilina 2/metabolismo , Corpos de Inclusão Intranuclear/metabolismo , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Mutação/genética , Trifosfato de Adenosina/farmacologia , Animais , Linhagem Celular Transformada , Citoplasma/genética , Citoplasma/metabolismo , Citoplasma/patologia , Proteínas de Fluorescência Verde/genética , Corpos de Inclusão Intranuclear/efeitos dos fármacos , Camundongos , Dinâmica não Linear , Fotodegradação , Transfecção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA