Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Planta Med ; 88(7): 548-558, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34229355

RESUMO

Neuroprotective effects of nicotine are still under debate, so further studies on its effectiveness against Parkinson's disease are required. In our present study, we used primary dopaminergic cell cultures and N18TG2 neuroblastoma cells to investigate the effect of nicotine and its neuroprotective potential against rotenone toxicity. Nicotine protected dopaminergic (tyrosine hydroxylase immunoreactive) neurons against rotenone. This effect was not nAChR receptor-dependent. Moreover, the alkaloid at a concentration of 5 µM caused an increase in neurite length, and at a concentration of 500 µM, it caused an increase in neurite count in dopaminergic cells exposed to rotenone. Nicotine alone was not toxic in either cell culture model, while the highest tested concentration of nicotine (500 µM) caused growth inhibition of N18TG2 neuroblastoma cells. Nicotine alone increased the level of glutathione in both cell cultures and also in rotenone-treated neuroblastoma cells. The obtained results may be helpful to explain the potential neuroprotective action of nicotine on neural cell cultures.


Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Técnicas de Cultura de Células , Células Cultivadas , Dopamina/farmacologia , Neurônios Dopaminérgicos , Neuroblastoma/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Nicotina/farmacologia , Rotenona/toxicidade
2.
J Toxicol Pathol ; 33(2): 87-95, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32425341

RESUMO

This study investigated the protective effects of minocycline against acrylamide (ACR)-induced neurotoxicity and testicular damage in Sprague-Dawley rats. Forty rats were divided into five groups (eight rats each). Group I received saline (0.5 mL/rat) daily for 10 days and served as the untreated control group. Group II received ACR (30 mg/kg body weight (b.w.)) daily for 10 days. Group III received ACR (30 mg/kg b.w.) daily for 10 days and subsequently minocycline (60 mg/kg b.w.) for five days. Group IV received ACR (30 mg/kg b.w.) daily for 10 days followed by saline for five days and served as the control group for the ACR-minocycline-treated group. Group V received minocycline (60 mg/kg b.w.) for five days. All treatments were administered orally. Rats in group I and V showed normal locomotor behavior and normal histology of the brain and testes. Administration of ACR (Group II and IV) resulted in weight loss and gait abnormalities. Furthermore, neuronal degeneration in the hippocampus and cerebellum and degeneration of the seminiferous tubular epithelium with formation of spermatid giant cells were observed. Ultrastructurally, ACR specifically damaged spermatogonia and spermatocytes. Acrylamide was also seen to cause a significant increase of malondialdehyde levels in the brain and testes. Treatment of ACR-administered rats with minocycline (Group III) significantly alleviated the loss of body weight and improved locomotor function. Minocycline also ameliorated neuronal degeneration and seminiferous tubular damage and decreased malondialdehyde concentrations. In conclusion, minocycline protects against neurotoxic effects of acrylamide and seminiferous tubular damage. Decreasing lipid peroxidation by minocycline might play a role in such protection.

3.
Exp Parasitol ; 197: 57-64, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30677395

RESUMO

Leishmaniasis is a vector borne parasitic disease affecting millions of people worldwide and is spreading into further areas because of global warming. The development of new active substances against these single-cell eukaryotic parasites is of great importance. Leishmania tarentolae promastigotes (LtP) are non-pathogenic for mammals and serve as model organisms for pathogenic Leishmania in basic research. However, it is important to refine methods to study the process of the infection of mammalian macrophages by LtP and pathogenic Leishmania. Important stages of the infection are phagocytosis by macrophages and multiplication of Leishmania amastigotes in the phagolysosome of macrophages. In this study, advanced methods using electron spin resonance (ESR) spectroscopy and genetically manipulated LtP were used to monitor the infection of adherent J774 macrophages with LtP. An ESR method was established to detect the formation of superoxide radicals directly in adherent J774 cells and to investigate the effect of LtP on this activity. J774 cells responded with a burst of superoxide radicals in the presence of phorbol myristate acetate as positive control. In contrast, challenging J774 cells with LtP resulted in a much lower burst of superoxide radicals. To facilitate LtP detection in the phagolysosome of J774 macrophages, LtP expressing enhanced green fluorescent protein (EGFP-LtP) were constructed. After different infection times with EGFP-LtP, the J774 cells were visualized by phase contrast microscopy and the cell number was determined. The intramacrophage Leishmania tarentolae amastigotes (LtA) expressing EGFP were detected by fluorescence microscopy and then counted with ImageJ. These experiments showed that LtP are taken up by J774 cells and form intraphagolysosomal amastigotes. LtA under our conditions multiplied intracellularly and were able to persist about 48 h in J774 cells. These experiments showed that ESR spectroscopy of attached macrophages and the use of the EGFP-LtP are suitable methods to study the initial phase of Leishmania infection in vitro.


Assuntos
Leishmania/imunologia , Macrófagos/parasitologia , Fagocitose , Animais , Linhagem Celular , Espectroscopia de Ressonância de Spin Eletrônica , Eletroporação , Humanos , Leishmania/genética , Macrófagos/imunologia , Microscopia de Fluorescência , Microscopia de Contraste de Fase , Superóxidos/metabolismo
4.
Biochim Biophys Acta Bioenerg ; 1859(9): 925-931, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29777685

RESUMO

BACKGROUND AND PURPOSE: Based on the fact that traumatic brain injury is associated with mitochondrial dysfunction we aimed at localization of mitochondrial defect and attempted to correct it by thiamine. EXPERIMENTAL APPROACH: Interventional controlled experimental animal study was used. Adult male Sprague-Dawley rats were subjected to lateral fluid percussion traumatic brain injury. Thiamine was administered 1 h prior to trauma; cortex was extracted for analysis 4 h and 3 d after trauma. KEY RESULTS: Increased expression of inducible nitric oxide synthase (iNOS) and tumor necrosis factor receptor 1 (TNF-R1) by 4 h was accompanied by a decrease in mitochondrial respiration with glutamate but neither with pyruvate nor succinate. Assays of TCA cycle flux-limiting 2-oxoglutarate dehydrogenase complex (OGDHC) and functionally linked enzymes (glutamate dehydrogenase, glutamine synthetase, pyruvate dehydrogenase, malate dehydrogenase and malic enzyme) indicated that only OGDHC activity was decreased. Application of the OGDHC coenzyme precursor thiamine rescued the activity of OGDHC and restored mitochondrial respiration. These effects were not mediated by changes in the expression of the OGDHC sub-units (E1k and E3), suggesting post-translational mechanism of thiamine effects. By the third day after TBI, thiamine treatment also decreased expression of TNF-R1. Specific markers of unfolded protein response did not change in response to thiamine. CONCLUSION AND IMPLICATIONS: Our data point to OGDHC as a major site of damage in mitochondria upon traumatic brain injury, which is associated with neuroinflammation and can be corrected by thiamine. Further studies are required to evaluate the pathological impact of these findings in clinical settings.


Assuntos
Biomarcadores/metabolismo , Lesões Encefálicas Traumáticas/fisiopatologia , Regulação da Expressão Gênica/efeitos dos fármacos , Complexo Cetoglutarato Desidrogenase/metabolismo , Mitocôndrias/fisiologia , Inflamação Neurogênica/prevenção & controle , Tiamina/farmacologia , Animais , Metabolismo Energético , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Complexo Cetoglutarato Desidrogenase/genética , Masculino , Mitocôndrias/efeitos dos fármacos , Inflamação Neurogênica/etiologia , Inflamação Neurogênica/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Oxirredução , Ratos , Ratos Sprague-Dawley , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Complexo Vitamínico B/farmacologia
5.
Proc Natl Acad Sci U S A ; 112(1): 130-5, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25535394

RESUMO

Because different proteins compete for the proton gradient across the inner mitochondrial membrane, an efficient mechanism is required for allocation of associated chemical potential to the distinct demands, such as ATP production, thermogenesis, regulation of reactive oxygen species (ROS), etc. Here, we used the superresolution technique dSTORM (direct stochastic optical reconstruction microscopy) to visualize several mitochondrial proteins in primary mouse neurons and test the hypothesis that uncoupling protein 4 (UCP4) and F0F1-ATP synthase are spatially separated to eliminate competition for the proton motive force. We found that UCP4, F0F1-ATP synthase, and the mitochondrial marker voltage-dependent anion channel (VDAC) have various expression levels in different mitochondria, supporting the hypothesis of mitochondrial heterogeneity. Our experimental results further revealed that UCP4 is preferentially localized in close vicinity to VDAC, presumably at the inner boundary membrane, whereas F0F1-ATP synthase is more centrally located at the cristae membrane. The data suggest that UCP4 cannot compete for protons because of its spatial separation from both the proton pumps and the ATP synthase. Thus, mitochondrial morphology precludes UCP4 from acting as an uncoupler of oxidative phosphorylation but is consistent with the view that UCP4 may dissipate the excessive proton gradient, which is usually associated with ROS production.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Microscopia/métodos , Mitocôndrias/metabolismo , Neurônios/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Animais , Potencial da Membrana Mitocondrial , Camundongos , Membranas Mitocondriais/metabolismo , Proteínas de Desacoplamento Mitocondrial , Prótons , Canais de Ânion Dependentes de Voltagem/metabolismo
6.
Histochem Cell Biol ; 148(3): 313-329, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28397143

RESUMO

Lentiviruses are suitable to transfer potential therapeutic genes into non-replicating cells such as neurons, but systematic in vivo studies on transduction of neural cells within the complete brain are missing. We analysed the distribution of transduced cells with respect to brain structure, virus tropism, numbers of transduced neurons per brain, and influence of the Vpx or Vpr accessory proteins after injection of vectors based on SIVsmmPBj, HIV-2, and HIV-1 lentiviruses into the right striatum of the mouse brain. Transduced cells were found ipsilaterally around the injection canal, in corpus striatum and along corpus callosum, irrespective of the vector type. All vectors except HIV-2SEW transduced also single cells in the olfactory bulb, hippocampus, and cerebellum. Vector HIV-2SEW was the most neuron specific. However, vectors PBjSEW and HIV-1SEW transduced more neurons per brain (means 41,299 and 32,309) than HIV-2SEW (16,102). In the presence of Vpx/Vpr proteins, HIV-2SEW(Vpx) and HIV-1SEW(Vpr) showed higher overall transduction efficiencies (30,696 and 27,947 neurons per brain) than PBjSEW(Vpx) (6636). The distances of transduced cells from the injection canal did not differ among the viruses but correlated positively with the numbers of transduced neurons. The presence of Vpx/Vpr did not increase the numbers of transduced neurons. Parental virus type and the vector equipment seem to influence cellular tropism and transduction efficiency. Thus, precision of injection and choice of virus pseudotype are not sufficient when targeted lentiviral vector transduction of a defined brain cell population is required.


Assuntos
Encéfalo/virologia , Vetores Genéticos/farmacocinética , HIV-1/metabolismo , HIV-2/metabolismo , Lentivirus/genética , Vírus da Imunodeficiência Símia/metabolismo , Transdução Genética/métodos , Tropismo Viral , Animais , Encéfalo/metabolismo , Células Cultivadas , Feminino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , HIV-1/genética , HIV-2/genética , Lentivirus/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Pesquisa Qualitativa , Vírus da Imunodeficiência Símia/genética
7.
Phytother Res ; 30(12): 2044-2052, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27654887

RESUMO

Aging-related neurodegenerative diseases, such as Parkinson's disease (PD) or related disorders, are an increasing societal and economic burden worldwide. Δ9-Tetrahydrocannabinol (THC) is discussed as a neuroprotective agent in several in vitro and in vivo models of brain injury. However, the mechanisms by which THC exhibits neuroprotective properties are not completely understood. In the present study, we investigated neuroprotective mechanisms of THC in glutamate-induced neurotoxicity in primary murine mesencephalic cultures, as a culture model for PD. Glutamate was administered for 48 h with or without concomitant THC treatment. Immunocytochemistry staining and resazurin assay were used to evaluate cell viability. Furthermore, superoxide levels, caspase-3 activity, and mitochondrial membrane potential were determined to explore the mode of action of this compound. THC protected dopaminergic neurons and other cell types of primary dissociated cultures from glutamate-induced neurotoxicity. Moreover, THC significantly counteracted the glutamate-induced mitochondrial membrane depolarization and apoptosis. SR141716A, a CB1 receptor antagonist, concentration-dependently blocked the protective effect of THC in primary mesencephalic cultures. In conclusion, THC exerts anti-apoptotic and restores mitochondrial membrane potential via a mechanism dependent on CB1 receptor. It strengthens the fact that THC has a benefit on degenerative cellular processes occurring, among others, in PD and other neurodegenerative diseases by slowing down the progression of neuronal cell death. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Receptor CB1 de Canabinoide/uso terapêutico , Animais , Morte Celular , Feminino , Camundongos , Doença de Parkinson , Gravidez , Receptor CB1 de Canabinoide/administração & dosagem
8.
Bioorg Med Chem ; 22(2): 684-91, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24393721

RESUMO

Tocopherols (TOH) are lipophilic antioxidants which require the phenolic OH group for their redox activity. In contrast, non-redox active esters of α-TOH with succinate (α-TOS) were shown to possess proapoptotic activity in cancer cells. It was suggested that this activity is mediated via mitochondrial inhibition with subsequent O2(-) production triggering apoptosis and that the modification of the linker between the succinate and the lipophilic chroman may modulate this activity. However, the specific mechanism and the influence of the linker are not clear yet on the level of the mitochondrial respiratory chain. Therefore, this study systematically compared the effects of α-TOH acetate (α-TOA), α-TOS and α-tocopheramine succinate (α-TNS) in cells and submitochondrial particles (SMP). The results showed that not all cancer cell lines are highly sensitive to α-TOS and α-TNS. In HeLa cells α-TNS did more effectively reduce cell viability than α-TOS. The complex I activity of SMP was little affected by α-TNS and α-TOS while the complex II activity was much more inhibited (IC50=42±8µM α-TOS, 106±8µM α-TNS, respectively) than by α-TOA (IC50 >1000µM). Also the complex III activity was inhibited by α-TNS (IC50=137±6µM) and α-TOS (IC50=315±23µM). Oxygen consumption of NADH- or succinate-respiring SMP, involving the whole electron transfer machinery, was dose-dependently decreased by α-TOS and α-TNS, but only marginal effects were observed in the presence of α-TOA. In contrast to the similar inhibition pattern of α-TOS and α-TNS, only α-TOS triggered O2(-) formation in succinate- and NADH-respiring SMP. Inhibitor studies excluded complex I as O2(-) source and suggested an involvement of complex III in O2(-) production. In cancer cells only α-TOS was reproducibly able to increase O2(-) levels above the background level but neither α-TNS nor α-TOA. Furthermore, the stability of α-TNS in liver homogenates was significantly lower than that of α-TOS. In conclusion, this suggests that α-TNS although it has a structure similar to α-TOS is not acting via the same mechanism and that for α-TOS not only complex II but also complex III interactions are involved.


Assuntos
Antineoplásicos/farmacologia , Mitocôndrias/efeitos dos fármacos , Succinatos/farmacologia , Superóxidos/metabolismo , Vitamina E/análogos & derivados , alfa-Tocoferol/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/antagonistas & inibidores , Complexo II de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Radicais Livres/metabolismo , Células HeLa , Humanos , Mitocôndrias/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , Partículas Submitocôndricas/efeitos dos fármacos , Partículas Submitocôndricas/metabolismo , Succinatos/química , Succinatos/metabolismo , Células Tumorais Cultivadas , Vitamina E/química , Vitamina E/metabolismo , Vitamina E/farmacologia , alfa-Tocoferol/química , alfa-Tocoferol/metabolismo
9.
J Neural Transm (Vienna) ; 120(9): 1271-80, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23459926

RESUMO

Resveratrol interacts with the complex III of the respiratory chain, is a radical scavenger and also suppressor of radical formation in the mitochondria. It reduces the intracellular calcium levels in pre- and postsynaptic neurons and also may inhibit the pro-apoptotic factors in glutamate overflow that occurs, e.g. in excitotoxicity. In cell cultures, glutamate overflow leads to formation of free radicals and results in apoptosis. This increase of radical concentration is enhanced by influx of cations like iron or copper ions into the cell. In present study, the beneficial action of resveratrol was investigated in glutamate-affected dissociated cultures of mice mesencephalic primary cultures. On the 10th day in vitro, 5 mM of glutamate was administered for 15 min and the cultures were further maintained in medium containing 0, 0.01, 0.1 or 1 µM of resveratrol. Resveratrol reduced glutamate-induced damages. The number of dopaminergic neurons was increased and their morphology ameliorated when resveratrol followed glutamate treatment. A significant reduction of glutamate-induced radical formation in cultures treated with resveratrol corresponded with a considerable high antioxidative potential of this stilbene determined using the DPPH assay. In addition, ICP-OES was set up to measure the tissues' copper and iron contents in organotypic cortical cultures of glutamate treated (0 or 30 µM) slices and those in which resveratrol (0, 0.01, 0.1 or 1 µM) was co-administered. Levels of copper were dose-dependently increased, and also the concentration of iron was higher in resveratrol-treated organotypic cultures. The hypothesis that resveratrol has beneficial actions against glutamate damages was verified.


Assuntos
Antioxidantes/farmacologia , Encéfalo/patologia , Antagonistas de Aminoácidos Excitatórios , Ácido Glutâmico/efeitos dos fármacos , Ácido Glutâmico/toxicidade , Estilbenos/farmacologia , Animais , Compostos de Bifenilo , Células Cultivadas , Corantes , Cobre/metabolismo , Etídio/análogos & derivados , Feminino , Corantes Fluorescentes , Ferro/metabolismo , Mesencéfalo/citologia , Mesencéfalo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Neuritos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Picratos , Gravidez , Propídio , Resveratrol , Espectrofotometria Atômica , Sais de Tetrazólio , Tiazóis , Tirosina 3-Mono-Oxigenase/metabolismo
10.
Comput Methods Programs Biomed ; 241: 107731, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37544165

RESUMO

BACKGROUND AND OBJECTIVE: Parkinson's Disease (PD), a common neurodegenerative disorder and one of the major current challenges in neuroscience and pharmacology, may potentially be tackled by the modern AI techniques employed in drug discovery based on molecular property prediction. The aim of our study was to explore the application of a machine learning setup for the identification of the best potential drug candidates among FDA approved drugs, based on their predicted PINK1 expression-enhancing activity. METHODS: Our study relies on supervised machine learning paradigm exploiting in vitro data and utilizing the scaffold splits methodology in order to assess model's capability to extract molecular patterns and generalize from them to new, unseen molecular representations. Models' predictions are combined in a meta-ensemble setup for finding new pharmacotherapies based on the predicted expression of PINK1. RESULTS: The proposed machine learning setup can be used for discovering new drugs for PD based on the predicted increase of expression of PINK1. Our study identified nitazoxanide as well as representatives of imidazolidines, trifluoromethylbenzenes, anilides, nitriles, stilbenes and steroid esters as the best potential drug candidates for PD with PINK1 expression-enhancing activity on or inside the cell's mitochondria. CONCLUSIONS: The applied methodology allows to reveal new potential drug candidates against PD. Next to novel indications, it allows also to confirm the utility of already known antiparkinson drugs, in the new context of PINK1 expression, and indicates the potential for simultaneous utilization of different mechanisms of action.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Reposicionamento de Medicamentos , Mitocôndrias/metabolismo , Antiparkinsonianos/farmacologia , Proteínas Quinases/metabolismo , Proteínas Quinases/uso terapêutico
11.
Antioxidants (Basel) ; 12(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37107234

RESUMO

Thymoquinone (TQ), an active compound from Nigella sativa seeds, is often described as a pharmacologically relevant compound with antioxidative properties, while the synthesis of TQ in the plant via oxidations makes it inapplicable for scavenging radicals. Therefore, the present study was designed to reassess the radical scavenging properties of TQ and explore a potential mode of action. The effects of TQ were studied in models with mitochondrial impairment and oxidative stress induced by rotenone in N18TG2 neuroblastoma cells and rotenone/MPP+ in primary mesencephalic cells. Tyrosine hydroxylase staining revealed that TQ significantly protected dopaminergic neurons and preserved their morphology under oxidative stress conditions. Quantification of the formation of superoxide radicals via electron paramagnetic resonance showed an initial increase in the level of superoxide radicals in the cell by TQ. Measurements in both cell culture systems revealed that the mitochondrial membrane potential was tendentially lowered, while ATP production was mostly unaffected. Additionally, the total ROS levels were unaltered. In mesencephalic cell culture under oxidative stress conditions, caspase-3 activity was decreased when TQ was administered. On the contrary, TQ itself tremendously increased the caspase-3 activity in the neuroblastoma cell line. Evaluation of the glutathione level revealed an increased level of total glutathione in both cell culture systems. Therefore, the enhanced resistance against oxidative stress in primary cell culture might be a consequence of a lowered caspase-3 activity combined with an increased pool of reduced glutathione. The described anti-cancer ability of TQ might be a result of the pro-apoptotic condition in neuroblastoma cells. Our study provides evidence that TQ has no direct scavenging effect on superoxide radicals.

12.
Redox Biol ; 62: 102669, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36933393

RESUMO

Brain injury is accompanied by neuroinflammation, accumulation of extracellular glutamate and mitochondrial dysfunction, all of which cause neuronal death. The aim of this study was to investigate the impact of these mechanisms on neuronal death. Patients from the neurosurgical intensive care unit suffering aneurysmal subarachnoid hemorrhage (SAH) were recruited retrospectively from a respective database. In vitro experiments were performed in rat cortex homogenate, primary dissociated neuronal cultures, B35 and NG108-15 cell lines. We employed methods including high resolution respirometry, electron spin resonance, fluorescent microscopy, kinetic determination of enzymatic activities and immunocytochemistry. We found that elevated levels of extracellular glutamate and nitric oxide (NO) metabolites correlated with poor clinical outcome in patients with SAH. In experiments using neuronal cultures we showed that the 2-oxoglutarate dehydrogenase complex (OGDHC), a key enzyme of the glutamate-dependent segment of the tricarboxylic acid (TCA) cycle, is more susceptible to the inhibition by NO than mitochondrial respiration. Inhibition of OGDHC by NO or by succinyl phosphonate (SP), a highly specific OGDHC inhibitor, caused accumulation of extracellular glutamate and neuronal death. Extracellular nitrite did not substantially contribute to this NO action. Reactivation of OGDHC by its cofactor thiamine (TH) reduced extracellular glutamate levels, Ca2+ influx into neurons and cell death rate. Salutary effect of TH against glutamate toxicity was confirmed in three different cell lines. Our data suggest that the loss of control over extracellular glutamate, as described here, rather than commonly assumed impaired energy metabolism, is the critical pathological manifestation of insufficient OGDHC activity, leading to neuronal death.


Assuntos
Ácido Glutâmico , Complexo Cetoglutarato Desidrogenase , Ratos , Animais , Ácido Glutâmico/metabolismo , Estudos Retrospectivos , Citoplasma/metabolismo , Complexo Cetoglutarato Desidrogenase/metabolismo , Mitocôndrias/metabolismo , Tiamina/metabolismo , Tiamina/farmacologia , Óxido Nítrico/metabolismo
13.
J Neural Transm (Vienna) ; 119(12): 1483-90, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22729518

RESUMO

Swainsonine (SW) is an indolizidine triol plant alkaloid isolated from the species Astragalus, colloquially termed locoweed. When chronically ingested by livestock and wildlife, symptoms include severe neuronal disturbance. Toxicity to the central and peripheral nervous system is caused by inhibition of lysosomal α-mannosidase (AMA) and accumulation of intracellular oligosaccharide. Consequently, SW has been used as a model substance in investigations of lysosomal storage diseases. Involvement of the basal ganglia has been postulated due to the neuronal symptoms of affected animals. Therefore, primary midbrain cultures from embryonic mice containing dopaminergic neurons were utilized in this study. Neural cells were exposed to SW (0.01-100 µM) for 72 h. AMA activity was 50 % inhibited at 1 µM SW. Cytotoxic changes in cultures were observed above 25 µM SW by increases in lactate dehydrogenase activity and nitric oxide content. Neurotoxicity to dopaminergic cells was visualized by tyrosine hydroxylase immunohistochemistry. Structural degeneration scored as dendritic shortening and shrinkage of cell bodies was dose-dependent and resulted in nerve loss above 25 µM. SW exposure caused progression from reversible to irreversible cytotoxicity. Partial regeneration of AMA-activity in culture was observed on removal of SW. The antioxidative vitamins ascorbic acid and tocopherol (both 100 µM) partially reversed the toxic effect on dopaminergic cells and ascorbic acid decreased AMA inhibition. Thus, neuronal midbrain cell cultures can demonstrate the neurotoxic action of SW and cytoprotective strategies may be tested at a single nerve cell level.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Swainsonina/toxicidade , Animais , Células Cultivadas , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Imuno-Histoquímica , Camundongos
14.
J Neural Transm (Vienna) ; 117(1): 5-12, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19707849

RESUMO

Green tea polyphenol epigallocatechin-3-gallate (EGCG) is reported to have antioxidant abilities and to counteract beneficially mitochondrial impairment and oxidative stress. The present study was designed to investigate neuroprotective effects of EGCG on rotenone-treated dissociated mesencephalic cultures and organotypic striatal cultures. Rotenone is a potent inhibitor of complex I of the respiratory chain, which in vitro causes pathological and neurochemical characteristics of diseases in which mitochondrial impairment is involved, e.g., Parkinson's disease. Treatment with EGCG (0.1, 1, 10 muM) alone had no significant effects on mesencephalic cultures. In striatal slice cultures, EGCG led to a significant increase of propidium iodide (PI) uptake and 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM), but not dihydroethidium (DHE) fluorescence intensity. Rotenone (20 nM on the eighth DIV for 48 h) significantly decreased the numbers and the neurite lengths of TH ir neurons by 23 and 34% in dissociated mesencephalic cell cultures compared to untreated controls. Exposure of striatal slices to rotenone (0.5 mM for 48 h) significantly increased PI uptake, and DAF-FM and DHE fluorescence intensities by 41 and 136 and 19%, respectively, compared to controls. Against rotenone, in dissociated mesencephalic cultures, EGCG produced no significant effect on either the number or neurite lengths of THir neurons compared to rotenone-treated cultures, but EGCG significantly decreased PI uptake by 19% and DAF-FM fluorescence intensity by 19 and 58%, respectively, compared to increase in rotenone-exposed striatal slices. On the other hand, EGCG did not affect superoxide (O(2) (-)) formation as detected with DHE. These data indicate that EGCG slightly protects striatal slices by counteracting nitric oxide (NO(.)) production by rotenone. In conclusion, EGCG partially protects striatal slices but not dissociated cells against rotenone toxicity.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Catequina/análogos & derivados , Fármacos Neuroprotetores/farmacologia , Animais , Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/fisiopatologia , Catequina/administração & dosagem , Catequina/farmacologia , Contagem de Células , Células Cultivadas , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/lesões , Corpo Estriado/fisiopatologia , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/lesões , Mesencéfalo/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Neuritos/efeitos dos fármacos , Neuritos/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Fármacos Neuroprotetores/administração & dosagem , Óxido Nítrico/metabolismo , Rotenona , Superóxidos/metabolismo , Técnicas de Cultura de Tecidos , Tirosina 3-Mono-Oxigenase/metabolismo
15.
Can J Neurol Sci ; 37(1): 81-5, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20169778

RESUMO

BACKGROUND: In Parkinson's disease, most of current therapies only provide symptomatic treatment and so far there is no drug which directly affects the disease process. OBJECTIVES: To investigate the neuroprotective effects of minocycline against long-term rotenone toxicity in primary dopaminergic cell cultures. METHODS: Embryonic mice of 14-days-old were used for preparation of primary dopaminergic cell cultures. On the 6th day in vitro, prepared cultures were treated both with minocycline alone (1, 5, 10 and 20 microM) and concomitantly with rotenone (5 and 20 nM) and minocycline. Cultures were incubated at 37 degrees C for six consecutive days. On Day in vitro culture medium was aspirated and used for measuring lactate dehydrogenase. Cultured cells were fixed in 4% paraformaldhyde and stained immunohistochemically against tyrosine hydroxylase. RESULTS: Treatment of cultures with 5 and 20 nM of rotenone significantly decreased the survival of tyrosine hydroxylase immunoreactive neurons by 27 and 31% and increased the release of lactate dehydrogenase into the culture medium by 31 and 236%, respectively compared to untreated controls. Minocycline (1, 5, 10 microM) significantly protected tyrosine hydroxylase immunoreactive neurons by 17, 15 and 19% and 13, 22 and 23% against 5 and 20 nM of rotenone, respectively compared to rotenone-treated cultures. Minocycline (only at 10 microM) significantly decreased the release of lactate dehydrogenase by 79% and 133% against 5 and 20 nM of rotenone, respectively. CONCLUSION: Minocycline has neuroprotective potential against the progressive loss of tyrosine hydroxylase immunoreactive neurons induced by long-term rotenone toxicity in primary dopaminergic cultures.


Assuntos
Dopamina/metabolismo , Inseticidas/toxicidade , Minociclina/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Rotenona/toxicidade , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Interações Medicamentosas , Embrião de Mamíferos , Feminino , Hidroliases/metabolismo , Mesencéfalo/citologia , Camundongos , Neurônios/metabolismo , Gravidez , Tirosina 3-Mono-Oxigenase/metabolismo
16.
Antioxidants (Basel) ; 9(2)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033040

RESUMO

Phytocannabinoids protect neurons against stressful conditions, possibly via the heme oxygenase (HO) system. In cultures of primary mesencephalic neurons and neuroblastoma cells, we determined the capability of cannabidiol (CBD) and tetrahydrocannabinol (THC) to counteract effects elicited by complex I-inhibitor rotenone by analyzing neuron viability, morphology, gene expression of IL6, CHOP, XBP1, HO-1 (stress response), and HO-2, and in vitro HO activity. Incubation with rotenone led to a moderate stress response but massive degeneration of dopaminergic neurons (DN) in primary mesencephalic cultures. Both phytocannabinoids inhibited in-vitro HO activity, with CBD being more potent. Inhibition of the enzyme reaction was not restricted to neuronal cells and occurred in a non-competitive manner. Although CBD itself decreased viability of the DNs (from 100% to 78%), in combination with rotenone, it moderately increased survival from 28.6% to 42.4%. When the heme degradation product bilirubin (BR) was added together with CBD, rotenone-mediated degeneration of DN was completely abolished, resulting in approximately the number of DN determined with CBD alone (77.5%). Using N18TG2 neuroblastoma cells, we explored the neuroprotective mechanism underlying the combined action of CBD and BR. CBD triggered the expression of HO-1 and other cell stress markers. Co-treatment with rotenone resulted in the super-induction of HO-1 and an increased in-vitro HO-activity. Co-application of BR completely mitigated the rotenone-induced stress response. Our findings indicate that CBD induces HO-1 and increases the cellular capacity to convert heme when stressful conditions are met. Our data further suggest that CBD via HO may confer full protection against (oxidative) stress when endogenous levels of BR are sufficiently high.

17.
Front Med (Lausanne) ; 7: 513, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33015090

RESUMO

Heme oxygenase (HO) and biliverdin reductase (BVR) activities are important for neuronal function and redox homeostasis. Resuscitation from cardiac arrest (CA) frequently results in neuronal injury and delayed neurodegeneration that typically affect vulnerable brain regions, primarily hippocampus (Hc) and motor cortex (mC), but occasionally also striatum and cerebellum. We questioned whether these delayed effects are associated with changes of the HO/BVR system. We therefore analyzed the activities of HO and BVR in the brain regions Hc, mC, striatum and cerebellum of rats subjected to ventricular fibrillation CA (6 min or 8 min) after 2 weeks following resuscitation, or sham operation. From all investigated regions, only Hc and mC showed significantly decreased HO activities, while BVR activity was not affected. In order to find an explanation for the changed HO activity, we analyzed protein abundance and mRNA expression levels of HO-1, the inducible, and HO-2, the constitutively expressed isoform, in the affected regions. In both regions we found a tendency for a decreased immunoreactivity of HO-2 using immunoblots and immunohistochemistry. Additionally, we investigated the histological appearance and the expression of markers indicative for activation of microglia [tumor necrosis factor receptor type I (TNFR1) mRNA and immunoreactivity for ionized calcium-binding adapter molecule 1 (Iba1])], and activation of astrocytes [immunoreactivity for glial fibrillary acidic protein (GFAP)] in Hc and mC. Morphological changes were detected only in Hc displaying loss of neurons in the cornu ammonis 1 (CA1) region, which was most pronounced in the 8 min CA group. In this region also markers indicating inflammation and activation of pro-death pathways (expression of HO-1 and TNFR1 mRNA, as well as Iba1 and GFAP immunoreactivity) were upregulated. Since HO products are relevant for maintaining neuronal function, our data suggest that neurodegenerative processes following CA may be associated with a decreased capacity to convert heme into HO products in particularly vulnerable brain regions.

18.
Phytother Res ; 23(5): 696-700, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19089849

RESUMO

Thymoquinone is the main active constituent of Nigella sativa seeds with antioxidant and antiinflammatory properties. In the present study, primary dopaminergic cultures from mouse mesencephala were used to investigate the neuroprotective effects of thymoquinone against MPP(+) and rotenone toxicities. MPP(+) (10 microm on day 10 in vitro (i.v.) for 48 h) significantly decreased the number of THir by 40% compared with untreated control cultures. Rotenone at both short (20 nm on day 10 i.v. for 48 h) and long-term (1 nm on day 6 i.v. for 6 consecutive days) toxicities reduced the number of THir neurons by 33% and 24%, respectively. Treatment of cultures with thymoquinone (0.01, 0.1, 1, 10 microm on day 8 i.v. for 4 days) rescued about 25% of THir neurons at concentrations of 0.1 microm and 1 microm against MPP(+)-induced cell death. Against rotenone, thymoquinone afforded significant protection in both short- and long-term models. In short-term rotenone toxicity, thymoquinone (from days 8-12 i.v.) saved about 65%, 74% and 79% of THir neurons at concentrations of 0.01, 0.1 and 1 microm, respectively, compared with cell loss induced by rotenone. In long-term rotenone toxicity, concomitant treatment of cultures with thymoquinone significantly rescued about 83-100% of THir neurons compared with rotenone-treated cultures. In conclusion, the current study presents for the first time the potential of thymoquinone to protect primary dopaminergic neurons against MPP(+) and rotenone relevant to Parkinson's disease.


Assuntos
1-Metil-4-fenilpiridínio/toxicidade , Benzoquinonas/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Rotenona/toxicidade , Animais , Células Cultivadas , Dopamina/metabolismo , Inseticidas/toxicidade , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/embriologia , Mesencéfalo/metabolismo , Camundongos , Neurônios/metabolismo , Fatores de Tempo
19.
Biochim Biophys Acta Bioenerg ; 1860(5): 391-401, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30885735

RESUMO

Mitochondrial uncoupling protein 2 (UCP2) is highly abundant in rapidly proliferating cells that utilize aerobic glycolysis, such as stem cells, cancer cells, and cells of the immune system. However, the function of UCP2 has been a longstanding conundrum. Considering the strict regulation and unusually short life time of the protein, we propose that UCP2 acts as a "signaling protein" under nutrient shortage in cancer cells. We reveal that glutamine shortage induces the rapid and reversible downregulation of UCP2, decrease of the metabolic activity and proliferation of neuroblastoma cells, that are regulated by glutamine per se but not by glutamine metabolism. Our findings indicate a very rapid (within 1 h) metabolic adaptation that allows the cell to survive by either shifting its metabolism to the use of the alternative fuel glutamine or going into a reversible, more quiescent state. The results imply that UCP2 facilitates glutamine utilization as an energetic fuel source, thereby providing metabolic flexibility during glucose shortage. The targeting UCP2 by drugs to intervene with cancer cell metabolism may represent a new strategy for treatment of cancers resistant to other therapies.


Assuntos
Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Glutamina/metabolismo , Proteínas de Neoplasias/biossíntese , Neuroblastoma/metabolismo , Proteína Desacopladora 2/biossíntese , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Metabolismo Energético/genética , Glucose/genética , Glucose/metabolismo , Glutamina/genética , Camundongos , Proteínas de Neoplasias/genética , Neuroblastoma/genética , Neuroblastoma/patologia , Proteína Desacopladora 2/genética
20.
Folia Neuropathol ; 57(2): 196-204, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31556578

RESUMO

INTRODUCTION: Exposure to acrylamide is increasing worldwide as a result of its heavy use in industry and formation in carbohydrate-rich food cooked at high temperature. Despite its neurotoxicity, no studies have shown its toxic effects on dopaminergic neurons yet. Therefore, the current study was carried out to show whether acrylamide adversely affects primary cultured dopaminergic neurons. MATERIAL AND METHODS: Acrylamide (0.001, 0.01, 0.1, 1, 2 mM) was added to two different groups of primary mesencephalic cell cultures on the 9th day in vitro for 24 and 48 h, respectively. Moreover, a group of cultures was treated with lower concentrations of acrylamide (0.01, 0.05, 0.1, 0.5 mM) on the 6th day in vitro for 5 consecutive days to investigate its long-term effects on dopaminergic neurons. Following each treatment, culture media were obtained for measuring lactate dehydrogenase, and cultured cells were stained immunocytochemically against tyrosine hydroxylase and neuronal nuclear antigens. RESULTS: Treatment of cultures with acrylamide for 48 h significantly reduced the number of dopaminergic neurons, adversely altered the morphology of the surviving neurons and increased levels of lactate dehydrogenase in the culture media. Similar treatment of cultures with acrylamide also resulted in lower numbers of total neuronal cells as shown by a reduced expression of the neuronal nuclear antigen. Prolonged treatment of cultures with lower concentrations of acrylamide slightly reduced the survival of dopaminergic neurons but increased the release of lactate dehydrogenase into the culture media as well. CONCLUSIONS: The current study shows, for the first time, neurotoxicity of acrylamide on dopaminergic neurons in the primary mesencephalic cell culture.


Assuntos
Acrilamida/toxicidade , Morte Celular/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Mesencéfalo/efeitos dos fármacos , Animais , Células Cultivadas , Neurônios Dopaminérgicos/citologia , L-Lactato Desidrogenase/análise , Mesencéfalo/citologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA