Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Genet Mol Res ; 16(2)2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28437559

RESUMO

Sphyraena (barracudas) represents the only genus of the Sphyraenidae family and includes 27 species distributed into the tropical and subtropical oceanic regions. These pelagic predators can reach large sizes and, thus, attracting significant interest from commercial and sport fishing. Evolutionary data for this fish group, as well its chromosomal patterns, are very incipient. In the present study, the species Sphyraena guachancho, S. barracuda, and S. picudilla were analyzed under conventional (Giemsa staining, C-banding, and Ag-NOR) and molecular (CMA3 banding, and in situ hybridization with 18S rDNA, 5S rDNA, and telomeric probes) cytogenetic methods. The karyotypic patterns contrast with the current phylogenetic relationships proposed for this group, showing by themselves to be distinct among closely related species, and similar among less related ones. This indicates homoplasic characteristics, with similar karyotype patterns originating at least twice, independently. Although still cytogenetically poor investigated, our data were enough to put in evidence a variety of ancient conserved traits and evolutionary novelties for the Sphyraena genus. In this sense, it is fundamental that a larger number of Sphyraenidae species, as well as of other phylogenetically related families, be also investigated. This will solidify the knowledge of their karyotypic patterns, and the evolutionary path followed by the species of this particular fish family.


Assuntos
Cromossomos/genética , Evolução Molecular , Peixes/genética , Cariótipo , Animais , Bandeamento Cromossômico , Peixes/classificação , Hibridização in Situ Fluorescente , Filogenia
2.
Genet Mol Res ; 16(2)2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28510256

RESUMO

The distribution patterns of marine biodiversity are complex, resulting from vicariant events and species dispersion, as well as local ecological and adaptive conditions. Furthermore, the wide geographic distribution of some species may be hindered by biogeographical barriers that can interfere in the gene flow. Cytogenetic analyses in marine fishes, especially those involving populations in small remote insular environments, remain scarce. In the Western Atlantic, species of wrasses from the genera Halichoeres and Thalassoma occur in biogeographic arrangements that make it possible to analyze cytogenetic patterns between coastal and widely separated island populations. Species of these genera were punctually analyzed in some Atlantic regions. In this study, we compared several chromosomal features, such as karyotype macrostructure, heterochromatic patterns, patterns of base-specific fluorochromes, Ag-NORs, and 18S and 5S ribosomal sites in Thalassoma noronhanum, Halichoeres poeyi, and Halichoeres radiatus individuals from distinct coastal or insular regions of Atlantic. Notably, all of them are characterized by multiple 18S and 5S rDNA sites with syntenic arrangements in some chromosome pairs. Individuals of T. noronhanum (between the insular regions of Rocas Atoll and Fernando de Noronha Archipelago - FNA) and H. poeyi (coastal areas from Northeastern Brazil) show no detectable differences among their cytogenetic patterns. On the other hand, H. radiatus from FNA and São Pedro and São Paulo Archipelago exhibit differences in the frequency of rDNA sites that could suggest some level of population structuring between these insular regions. Interregional cytogenetic inventories of marine species with wide geographic distribution need to be rapidly expanded. These data will allow a better understanding of the level of chromosomal stability between vast oceanic spaces, which may be less than previously thought.


Assuntos
Ecossistema , Cariótipo , Perciformes/genética , Polimorfismo Genético , Animais , Fluxo Gênico , Especiação Genética , RNA Ribossômico/genética
3.
Cytogenet Genome Res ; 142(3): 197-203, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24643007

RESUMO

Karyotype analyses of the cryptobenthic marine species Ctenogobius boleosoma and C. smaragdus were performed by means of classical and molecular cytogenetics, including physical mapping of the multigene 18S and 5S rDNA families. C. boleosoma has 2n = 44 chromosomes (2 submetacentrics + 42 acrocentrics; FN = 46) with a single chromosome pair each carrying 18S and 5S ribosomal sites; whereas C. smaragdus has 2n = 48 chromosomes (2 submetacentrics + 46 acrocentrics; FN = 50), also with a single pair bearing 18S rDNA, but an extensive increase in the number of GC-rich 5S rDNA sites in 21 chromosome pairs. The highly divergent karyotypes among Ctenogobius species contrast with observations in several other marine fish groups, demonstrating an accelerated rate of chromosomal evolution mediated by both chromosomal rearrangements and the extensive dispersion of 5S rDNA sequences in the genome.


Assuntos
Aberrações Cromossômicas/veterinária , DNA Ribossômico/genética , Evolução Molecular , Peixes/genética , Animais , Bandeamento Cromossômico/veterinária , Mapeamento Cromossômico/veterinária , Variação Genética , Cariótipo , RNA Ribossômico 18S/genética , RNA Ribossômico 5S/genética , Análise de Sequência de RNA
4.
Cytogenet Genome Res ; 142(1): 40-5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24217024

RESUMO

Approximately 90 species in the genus Leporinus (Characiformes, Anostomidae) are known, and most of them do not present differentiated sex chromosomes. However, there is a group of 7 species that share a heteromorphic ZW sex system. In all of these species, the W chromosome is the largest one in the karyotype and is mostly heterochromatic. We investigated the distribution of several microsatellites in the genome of 4 Leporinus species that possess ZW chromosomes. Our results showed a very large accumulation of mostly microsatellites on the W chromosomes. This finding supports the presence of an interconnection between heterochromatinization and the accumulation of repetitive sequences, which has been proposed for sex chromosome evolution, and suggests that heterochromatinization is the earlier of the 2 processes. In spite of the common origin that has been proposed for W chromosomes in all of the studied species, the microsatellites followed different evolutionary trajectories in each species, which indicates a high plasticity for sex chromosome differentiation.


Assuntos
Caraciformes/genética , Mapeamento Cromossômico/métodos , Repetições de Microssatélites/genética , Cromossomos Sexuais/genética , Animais , Brasil , Feminino , Heterocromatina/genética , Heterocromatina/ultraestrutura , Hibridização in Situ Fluorescente , Masculino , Cromossomos Sexuais/ultraestrutura , Especificidade da Espécie
5.
Genet Mol Res ; 13(4): 9628-35, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25501173

RESUMO

In Carangidae, Caranx is taxonomically controversial because of slight morphological differences among species, as well as because of its relationship with the genus Carangoides. Cytogenetic data has contributed to taxonomic and phylogenetic classification for some groups of fish. In this study, we examined the chromosomes of Caranx latus, Caranx lugubris, and Carangoides bartholomaei using classical methods, including conventional staining, C-banding, silver staining for nuclear organizer regions, base-specific fluorochrome, and 18S and 5S ribosomal sequence mapping using in situ hybridization. These 3 species showed chromosome numbers of 2n = 48, simple nuclear organizer regions (pair 1), and mainly centromeric heterochomatin. However, C. latus (NF = 50) and C. bartholomaei (NF = 50) showed a structurally conserved karyotype compared with C. lugubris (NF = 54), with a larger number of 2-armed chromosomes. The richness of GC-positive heterochromatic segments and sites in 5S rDNA in specific locations compared to the other 2 species reinforce the higher evolutionary dynamism in C. lugubris. Cytogenetic aspects shared between C. latus and C. bartholomaei confirm the remarkable phylogenetic proximity between these genera.


Assuntos
DNA Ribossômico/genética , Ecossistema , Peixes/genética , Mapeamento Físico do Cromossomo/métodos , Animais , Brasil , Hibridização in Situ Fluorescente , Cariotipagem , Especificidade da Espécie
6.
Genet Mol Res ; 13(4): 9951-9, 2014 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-25501206

RESUMO

Several chromosomal features of Gerreidae fish have been found to be conserved. In this group, it is unclear whether the high degree of chromosomal stasis is maintained when analyzing more dynamic regions of chromosomes, such as rDNA sites that generally show a higher level of variability. Thus, cytogenetic analyses were performed on 3 Atlantic species of the genus Eucinostomus using conventional banding (C-banding, Ag-NOR), AT- and GC-specific fluorochromes, and fluorescence in situ hybridization mapping of telomeric sequences and 5S and 18S rDNA sites. The results showed that although the karyotypical macrostructure of these species is similar (2n = 48 chromosomes, simple Ag-NORs seemingly located on homeologous chromosomes and centromeric heterochromatin pattern), there are differences in the positions of rDNA subunits 5S and 18S. Thus, the ribosomal sites have demonstrated to be effective cytotaxonomic markers in Eucinostomus, presenting a different evolutionary dynamics in relation to other chromosomal regions and allowing access to important evolutionary changes in this group.


Assuntos
Cromossomos/genética , DNA Ribossômico/genética , Evolução Molecular , Peixes/classificação , Peixes/genética , Cariotipagem , Animais , Feminino , Hibridização in Situ Fluorescente , Masculino , RNA Ribossômico 18S/genética , RNA Ribossômico 5S/genética
7.
ScientificWorldJournal ; 2014: 206168, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25383362

RESUMO

Sexual dimorphism is often observed in Crustaceans. Considering the great diversity of this subphylum, only few reports are found in the literature and most are mainly based on traditional morphometry. The present study uses geometric morphometrics analysis to identify sexual dimorphism by shape variation in the overexploited semiterrestrial crab Ucides cordatus, species with great social and economic importance in South America. Comparative morphology analyses were performed by using the outer face of the propodus of major cheliped, dorsal and anterior region of carapace shape. Significant differences in shape between sexes were detected in these body areas. The causes of dimorphism presented in this species are not clear but, analogous to other possibly associated species, it may be inferred that the causes are with adaptations to body ability of reproductive potential (females), and of reproductive behaviour and agonistics encounters (males). Additional analyses on courtship displays and other reproductive aspects should provide better comprehension of functionality of this morphological differentiation.


Assuntos
Tamanho Corporal , Crustáceos/anatomia & histologia , Caracteres Sexuais , Animais , Feminino , Masculino , Reprodução
8.
Cytogenet Genome Res ; 141(2-3): 186-94, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23919986

RESUMO

The Erythrinidae fish family is an excellent model for analyzing the evolution of sex chromosomes. Different stages of sex chromosome differentiation from homomorphic to highly differentiated ones can be found among the species of this family. Here, whole chromosome painting, together with the cytogenetic mapping of repetitive DNAs, highlighted the evolutionary relationships of the sex chromosomes among different erythrinid species and genera. It was demonstrated that the sex chromosomes can follow distinct evolutionary pathways inside this family. Reciprocal hybridizations with whole sex chromosome probes revealed that different autosomal pairs have evolved as the sex pair, even among closely related species. In addition, distinct origins and different patterns of differentiation were found for the same type of sex chromosome system. These features expose the high plasticity of the sex chromosome evolution in lower vertebrates, in contrast to that occurring in higher ones. A possible role of this sex chromosome turnover in the speciation processes is also discussed.


Assuntos
Evolução Molecular , Peixes/genética , Cromossomos Sexuais/genética , Animais , Feminino , Cariotipagem , Masculino
9.
Cytogenet Genome Res ; 141(2-3): 126-32, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23969732

RESUMO

Rachycentron canadum, a unique representative of the Rachycentridae family, has been the subject of considerable biotechnological interest due to its potential use in marine fish farming. This species has undergone extensive research concerning the location of genes and multigene families on its chromosomes. Although most of the genome of some organisms is composed of repeated DNA sequences, aspects of the origin and dispersion of these elements are still largely unknown. The physical mapping of repetitive sequences on the chromosomes of R. canadum proved to be relevant for evolutionary and applied purposes. Therefore, here, we present the mapping by fluorescence in situ hybridization of the transposable element (TE) Tol2, the non-LTR retrotransposons Rex1 and Rex3, together with the 18S and 5S rRNA genes in the chromosome of this species. The Tol2 TE, belonging to the family of hAT transposons, is homogeneously distributed in the euchromatic regions of the chromosomes but with huge colocalization with the 18S rDNA sites. The hybridization signals for Rex1 and Rex3 revealed a semi-arbitrary distribution pattern, presenting differentiated dispersion in euchromatic and heterochromatic regions. Rex1 elements are associated preferentially in heterochromatic regions, while Rex3 shows a scarce distribution in the euchromatic regions of the chromosomes. The colocalization of TEs with 18S and 5S rDNA revealed complex chromosomal regions of repetitive sequences. In addition, the nonpreferential distribution of Rex1 and Rex3 in all heterochromatic regions, as well as the preferential distribution of the Tol2 transposon associated with 18S rDNA sequences, reveals a distinct pattern of organization of TEs in the genome of this species. A heterogeneous chromosomal colonization of TEs may confer different evolutionary rates to the heterochromatic regions of this species.


Assuntos
Cromossomos/genética , Elementos de DNA Transponíveis/genética , Peixes/genética , Animais , Mapeamento Cromossômico , Hibridização in Situ Fluorescente , Cariotipagem , Retroelementos
10.
Cytogenet Genome Res ; 134(4): 295-302, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21720155

RESUMO

The arrangement of 6 repetitive DNA sequences in the mitotic and meiotic sex chromosomes of 2 Erythrinidae fish, namely Hoplias malabaricus and Erythrinus erythrinus, both with a multiple X(1)X(1)X(2)X(2)/X(1)X(2)Y sex chromosome system, was analyzed using fluorescence in situ hybridization. The distribution patterns of the repetitive sequences were distinct for each species. While some DNA repeats were species-specific, others were present in the sex chromosomes of both species at different locations. These data, together with the different morphological types of sex chromosomes and the distinct chromosomal rearrangements associated with the formation of the neo-Y chromosomes, support the plasticity of sex chromosome differentiation in the Erythrinidae family. Our present data highlight that the sex chromosomes in fish species may follow diverse differentiation patterns, even in the same type of sex chromosome system present in cofamiliar species.


Assuntos
Peixes/genética , Sequências Repetitivas de Ácido Nucleico/genética , Cromossomo X/genética , Cromossomo Y/genética , Animais , Peixes/classificação , Hibridização in Situ Fluorescente , Cariotipagem , Masculino , Meiose/genética , Mitose/genética , Especificidade da Espécie
11.
Genet Mol Res ; 9(3): 1807-14, 2010 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-20845306

RESUMO

Inoculation with bacterial or fungal antigens that stimulate cell proliferation has been widely used to obtain metaphases for cytogenetic studies of fish. We evaluated the potential of new pharmaceutical compounds as mitogenic agents in fish, testing the efficacy of Aminovac (mixed antigens and epsilon-acetamidocaproic acid), Broncho-Vaxom (bacterial lysate) and Estimoral (bacterial lysate) to increase the mitotic index in fingerlings of the Neotropical fish Prochilodus brevis (Prochilodontidae) and Hoplias malabaricus (Erythrinidae), which were obtained from an aquaculture facility. The animals were treated with intramuscular or intraperitoneal injections of 1 mL/50 g body weight of each compound. After 24 h, cytogenetic analyses were performed. All immunostimulants tested significantly stimulated cell division, although Aminovac proved to be the most efficient, leading to a 5-fold increase in the number of metaphase cells compared to the control group and to a 2-fold increase compared to conventional yeast inoculation. This compound facilitates fish cytogenetics analyses as it stimulates the proliferation of defense cells and reduces loss of samples. It will be especially useful for the study of specimens that either have a high commercial value or are fragile, small and/or rare.


Assuntos
Citogenética/métodos , Animais , Bactérias , Extratos Celulares/farmacologia , Peixes
12.
Genet Mol Res ; 8(3): 1099-1106, 2009 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-19768672

RESUMO

The Batrachoididae includes some venomous brackish and marine fish found in the Atlantic, Indian and Pacific oceans. This family is composed of 69 species, distributed among 19 genera. Species of the genus Thalassophryne have been reported along the coast of Rio Grande do Norte (Brazil); T. nattereri has been responsible for a large number of human injuries. Little is known about the cytogenetic features of this family. We made a karyotypic characterization of T. nattereri collected from the estuary of the Apodi/Mossoró River, using conventional Giemsa staining, C-banding and silver nitrate-nucleolar organizer region technique. There was a modal diploid value of 2n = 46 chromosomes (8m + 8sm + 24st + 6a; fundamental number = 86). Single ribosomal sites were detected in the terminal region on short arms of a subtelocentric pair (19th). Heterochromatin segments were preferentially located over centromeric regions in some chromosome pairs. Pericentric inversions and Robertsonian rearrangements seem to have played a major role in karyotype evolution within this genus of toadfish.

13.
Genet Mol Res ; 7(2): 358-70, 2008 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-18551402

RESUMO

Fishes from the families Sciaenidae and Sparidae, the former comprising coastal species associated with shallow waters on the continental shelf and the latter composed of typically marine species, are of significant economic value. Karyotypic data are available for about 20% of the total number of species in these groups. In the present study, cytogenetic analyses were carried out in three Sciaenidae species, Menticirrhus americanus, Ophioscion punctatissimus and Pareques acuminatus, as well as in the sparid fish, Archosargus probatocephalus, using conventional staining (Giemsa) and Ag-nucleolar organizer regions (NORs) and C-banding techniques. The diploid values (2n) and number of chromosome arms were equal to 48 in all species analyzed. NORs were located at pericentromeric positions, equivalent to large heterochromatic blocks, in M. americanus (1st pair), O. punctatissimus (10th pair), P. acuminatus (2nd pair), and A. probatocephalus (3rd pair). Heterochromatin was detected at the centromeric position in most chromosome pairs, being more conspicuous among Scianidae members. The remarkable karyotypic conservativeness detected in these species is similar to that observed in other perciform groups previously studied, regarding both the number of acrocentric chromosomes and NOR location. However, unusual events of heterochromatinization seem to have taken place along the karyotypic evolution of members of the family Sciaenidae. For the family Sparidae, distinct cytotypes between samples of Northeast Brazil and those previously analyzed on the southeastern coast were identified, suggesting that putative biogeographic barriers could be present throughout both regions on South Atlantic coast.


Assuntos
Análise Citogenética/métodos , Perciformes/genética , Animais , Brasil , Bandeamento Cromossômico , Diploide , Heterocromatina/genética , Cariotipagem , Biologia Marinha , Especificidade da Espécie
14.
Genet Mol Res ; 6(3): 575-80, 2007 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-17985310

RESUMO

The parrotfishes (family Scaridae) are comprised of the subfamilies Sparisomatinae and Scarinae. They are important agents of marine bioerosion, which rework the substrate with their beaklike jaws. Despite their importance, there are no published cytogenetic data on this group. We made cytogenetic analyses of Sparisoma axillare (Sparisomatinae) and Scarus trispinosus [corrected] (Scarinae) from the Brazilian coast. Differentiation in the diploid number in S. axillare compared to the basal karyotype of the Perciformes apparently occurred due to a Robertsonian fusion, combined with pericentric inversions. S. trispinosus [corrected] presented a conserved diploid number, but showed considerable structural karyotypic changes, resulting mainly from pericentric inversions. The Ag-NOR sites were unique and located on the short arm of the 1st subtelocentric pair in both species (possibly homeologous), corresponding to the 11th pair in S. axillare and the 9th pair in S. trispinosus [corrected] The constitutive heterochromatin is reduced in these species and is distributed in centromeric and pericentromeric regions in most of the chromosomes. The low fundamental number compared to the Scarus genus suggests a more basal condition for Sparisoma. The chromosome formula in S. trispinosus [corrected] was more diversified, deriving from large-scale pericentric inversions. Karyotypic evolution patterns observed for these representatives of the Sparisomatinae and Scarinae subfamilies, added to new data from a larger number of species, would allow us to determine if there is a tendency among the Sparisomatinae for centric fusion events.


Assuntos
Inversão Cromossômica , Perciformes/genética , Animais , Bandeamento Cromossômico , Cromossomos , Análise Citogenética , Citogenética/métodos , Diploide , Evolução Molecular , Heterocromatina/química , Cariotipagem , Região Organizadora do Nucléolo , Prata/metabolismo
15.
Genet Mol Res ; 6(4): 1097-106, 2007 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-18273803

RESUMO

The family Pomacentridae comprises about 326 species belonging to 28 genera. The genus Stegastes is composed of nearly 33 species, and 8 are endemic to the Brazilian Province, inhabiting the Brazilian coast (Stegastes fuscus, S. variabilis, S. leucosticus, S. uenfi, and S. pictus) or Western Atlantic oceanic islands (S. trindadensis, S. rocasensis and S. sanctipauli). Stegastes species play a major role in the reef ecosystem since they interfere significantly with the composition of benthonic organisms. Studies about population genetics and speciation of Neotropical ichthyofauna are scarce, particularly at insular areas from the Western Atlantic. Random amplified polymorphic DNA markers were used to analyze the population genetic structure of the continental species S. fuscus and S. variabilis (Northeastern Brazil) as well as the insular species S. sanctipauli (Saint Paul's Rocks). Analysis of population parameters revealed a high index of intrapopulation genetic variability in the species, except for S. sanctipauli, which showed low values. The phiST values in samples of S. fuscus and S. variabilis obtained at distinct collection sites 35 km apart from each other indicated a lack of population genetic structure. An intermediary profile of species-specific markers was detected in some individuals of S. fuscus and S. variabilis from Santa Rita, Rio Grande do Norte, suggesting a putative introgression event between the two species. The genetic profiles observed in Stegastes populations indicate a higher genetic variability along the shoreline than at oceanic sites, related to a reduced effective population size on islands. The lack of genetic differentiation among coastal populations suggests that, despite some biological features such as non-migratory behavior and territoriality, the pelagic larval phase of these species is able to promote an interpopulation homogeneity among sampled areas.


Assuntos
Perciformes/classificação , Perciformes/genética , Animais , Sequência de Bases , Brasil , DNA/genética , Primers do DNA/genética , Ecossistema , Variação Genética , Genética Populacional , Técnica de Amplificação ao Acaso de DNA Polimórfico , Especificidade da Espécie
16.
Mar Genomics ; 6: 25-31, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22578656

RESUMO

Fish from the family Labridae elicit considerable ecological interest, especially due to their complex interactions with the reef environment. Different karyoevolutionary tendencies have been identified in the subfamilies Bodianinae, Corinae and Cheilinae. Chromosomal analyses conducted in the Atlantic species Bodianus rufus (2n=48; 6m+12sm+14st+16a, FN=80), Bodianus pulchellus (2n=48; 4m+12sm+14st+18a, FN=78) and Bodianus insularis (2n=48; 4m+12sm+14st+18a, FN=78) identified Ag-NOR/18SrDNA sites located only in the terminal region of the short arm (p) of the largest subtelocentric pair. The 5S rDNA genes were mapped in the terminal region of the long arm (q) of the largest acrocentric pair and the p arm of chromosome 19 in B. insularis. The karyotype of the three species shows an extensive heterochromatic and argentophilic region, exceptionally decondensed, located in the p arm of the second subtelocentric pair. This region does not correspond to a NOR site, since it is not hybridized with 18S rDNA probes, and is not GC-rich, as generally occurs with nucleolus organizer regions of lower invertebrates. Heterochromatin in the three species is reduced and distributed over the centromeric and pericentromeric regions of chromosomes. The elevated number of two-armed chromosomes in species of Bodianus, in relation to other Labridae, shows karyotype diversification based on pericentric inversions, differentiating them markedly in terms of evolutionary tendencies that occur in subfamilies Corinae and Cheilininae. Structural cytogenetic similarities between B. pulchellus and B. insularis, in addition to the conserved chromosomal location pattern of ribosomal multigenic families, indicate phylogenetic proximity of these species.


Assuntos
Evolução Biológica , Heterocromatina/genética , Perciformes/genética , Animais , Oceano Atlântico , Cromossomos , Feminino , Heterocromatina/metabolismo , Cariótipo , Masculino , Região Organizadora do Nucléolo/metabolismo , Perciformes/classificação , Prata/metabolismo
17.
Heredity (Edinb) ; 93(2): 228-33, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15241446

RESUMO

The genus Erythrinus belongs to the family Erythrinidae, a neotropical fish group. This genus contains only two described species, Erythrinus erythrinus being the most widely distributed in South America. Six samples of this species from five distinct Brazilian localities and one from Argentina were studied cytogenetically. Four groups were identified on the basis of their chromosomal features. Group A comprises three samples, all with 2n = 54 chromosomes, a very similar karyotypic structure, and the absence of chromosome differentiation between males and females. One sample bears up to four supernumerary microchromosomes, which look like 'double minute chromosomes' in appearance. Groups B-D comprise the three remaining samples, all sharing an X(1)X(1)X(2)X(2)/X(1)X(2)Y sex chromosome system. Group B shows 2n = 54/53 chromosomes in females and males, respectively, and also shows up to three supernumerary microchromosomes. Groups C and D show 2n=52/51 chromosomes in females and males, respectively, but differ in the number of metacentric, subtelocentric, and acrocentric chromosomes. In these three groups (B-D), the Y is a metacentric chromosome clearly identified as the largest in the complement. The present results offer clear evidence that local samples of E. erythrinus retain exclusive and fixed chromosomal features, indicating that this species may represent a species complex.


Assuntos
Cromossomos/genética , Evolução Molecular , Peixes/genética , Animais , Argentina , Brasil , Análise Citogenética , Feminino , Cariotipagem , Masculino , Filogenia , Fatores Sexuais , Especificidade da Espécie
18.
Chromosome Res ; 5(1): 12-22, 1997 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9088639

RESUMO

Cytogenetic analyses (Giemsa staining, C-banding, AgNO3 labelling of nucleolus organizer regions (NORs) and staining with base-specific fluorochromes) were performed on the South American fish species Leporinus friderici, L. obtusidens and L. elongatus. The overall karyotypic structure, position of NORs, as well as the amount, distribution and composition of constitutive heterochromatin were determined. Particular attention was given to the highly differentiated ZZ/ZW sex chromosome system of L. obtusidens and L. elongatus. Sharing the apparently ancient macroscopic karyotype of Anostomidae, all three species have 2n = 54 meta- or submetacentric chromosomes. NORs were found exclusively on chromosome pair 2, which may represent the ancestral NOR-bearing chromosome of the anostomid karyotype. Observed differences in the relative position of NORs along chromosome 2 and variations in the amount and distribution of constitutive heterochromatin throughout the karyotype were most probably caused by heterochromatin-mediated chromosome rearrangements. Detailed analysis of the morphologically similar heteromorphic ZZ/ZW sex chromosomes of L. obtusidens and L. elongatus allowed detection of differences in the DNA composition of the largely heterochromatic W chromosomes. However, since these and the W chromosomes of three other Leporinus species exhibit homologies with respect to their relative size, centromere position and amount and distribution of heterochromatin, it is concluded that they evolved from the same ancestral W chromosome.


Assuntos
Peixes/genética , Heterocromatina/genética , Cariotipagem , Cromossomos Sexuais/genética , Animais , Bandeamento Cromossômico , Mapeamento Cromossômico , Evolução Molecular , Feminino , Masculino , Região Organizadora do Nucléolo/genética
19.
Genet. mol. res. (Online) ; 7(2): 358-370, 2008. tab, ilus
Artigo em Inglês | LILACS | ID: lil-641003

RESUMO

Fishes from the families Sciaenidae and Sparidae, the former comprising coastal species associated with shallow waters on the continental shelf and the latter composed of typically marine species, are of significant economic value. Karyotypic data are available for about 20% of the total number of species in these groups. In the present study, cytogenetic analyses were carried out in three Sciaenidae species, Menticirrhus americanus, Ophioscion punctatissimus and Pareques acuminatus, as well as in the sparid fish, Archosargus probatocephalus, using conventional staining (Giemsa) and Ag-nucleolar organizer regions (NORs) and C-banding techniques. The diploid values (2n) and number of chromosome arms were equal to 48 in all species analyzed. NORs were located at pericentromeric positions, equivalent to large heterochromatic blocks, in M. americanus (1st pair), O. punctatissimus (10th pair), P. acuminatus (2nd pair), and A. probatocephalus (3rd pair). Heterochromatin was detected at the centromeric position in most chromosome pairs, being more conspicuous among Scianidae members. The remarkable karyotypic conservativeness detected in these species is similar to that observed in other perciform groups previously studied, regarding both the number of acrocentric chromosomes and NOR location. However, unusual events of heterochromatinization seem to have taken place along the karyotypic evolution of members of the family Sciaenidae. For the family Sparidae, distinct cytotypes between samples of Northeast Brazil and those previously analyzed on the southeastern coast were identified, suggesting that putative biogeographic barriers could be present throughout both regions on South Atlantic coast.


Assuntos
Animais , Análise Citogenética/métodos , Perciformes/genética , Brasil , Bandeamento Cromossômico , Diploide , Heterocromatina/genética , Cariotipagem , Biologia Marinha , Especificidade da Espécie
20.
Genet. mol. res. (Online) ; 6(3): 575-580, 2007. ilus
Artigo em Inglês | LILACS | ID: lil-498914

RESUMO

The parrotfishes (family Scaridae) are comprised of the subfamilies Sparisomatinae and Scarinae. They are important agents of marine bioerosion, which rework the substrate with their beaklike jaws. Despite their importance, there are no published cytogenetic data on this group. We made cytogenetic analyses of Sparisoma axillare (Sparisomatinae) and Scarus coelestinus (Scarinae) from the Brazilian coast. Differentiation in the diploid number in S. axillare compared to the basal karyotype of the Perciformes apparently occurred due to a Robertsonian fusion, combined with pericentric inversions. S. coelestinus presented a conserved diploid number, but showed considerable structural karyotypic changes, resulting mainly from pericentric inversions. The Ag-NOR sites were unique and located on the short arm of the 1st subtelocentric pair in both species (possibly homeologous), corresponding to the 11th pair in S. axillare and the 9th pair in S. coelestinus. The constitutive heterochromatin is reduced in these species and is distributed in centromeric and pericentromeric regions in most of the chromosomes. The low fundamental number compared to the Scarus genus suggests a more basal condition for Sparisoma. The chromosome formula in S. coelestinus was more diversified, deriving from large-scale pericentric inversions. Karyotypic evolution patterns observed for these representatives of the Sparisomatinae and Scarinae subfamilies, added to new data from a larger number of species, would allow us to determine if there is a tendency among the Sparisomatinae for centric fusion events.


Assuntos
Animais , Bandeamento Cromossômico , Inversão Cromossômica , Análise Citogenética , Heterocromatina/química , Perciformes/genética , Cromossomos , Citogenética/métodos , Diploide , Evolução Molecular , Cariotipagem , Região Organizadora do Nucléolo , Prata/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA