Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mar Drugs ; 21(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36662217

RESUMO

Harmful algal blooms of toxin-producing microalgae are recurrent in southern Chile. Paralytic shellfish poisoning (PSP) outbreaks pose the main threat to public health and the fishing industry in the Patagonian fjords. This study aims to increase understanding of the individual and spatial variability of PSP toxicity in the foot of Concholepas concholepas, Chile's most valuable commercial benthic invertebrate species, extracted from the Guaitecas Archipelago in Chilean Patagonia. The objective is to determine the effect of pigment removal and freezing during the detoxification process. A total of 150 specimens (≥90 mm length) were collected from this area. The live specimens were transferred to a processing plant, where they were measured and gutted, the foot was divided into two equal parts, and pigment was manually removed from one of these parts. The PSP toxicity of each foot (edible tissue) was determined by mouse bioassay (MBA) and high-performance liquid chromatography with fluorescence detection and postcolumn oxidation (HPLC-FLD PCOX). The individual toxicity per loco, as the species is known locally, varied from <30 to 146 µg STX diHCL eq 100 g−1 (CV = 43.83%) and from 5.96 to 216.3 µg STX diHCL eq 100 g−1 (CV = 34.63%), using MBA and HPLC, respectively. A generalized linear model showed a negative relation between individual weight and toxicity. The toxicological profile showed a dominance of STX (>95%), neoSTX and GTX2. The removal of pigment produced a reduction in PSP toxicity of up to 90% and could represent a good detoxification tool moving forward. The freezing process in the muscle with pigment did not produce a clear pattern. There is a significant reduction (p < 0.05) of PSP toxicity via PCOX but not MBA. Furthermore, the study discusses possible management and commercialization implications of the findings regarding small-scale fisheries.


Assuntos
Gastrópodes , Intoxicação por Frutos do Mar , Animais , Camundongos , Toxinas Marinhas/análise , Saxitoxina/análise , Cromatografia Líquida de Alta Pressão , Frutos do Mar/análise
2.
J Fish Dis ; 42(3): 357-369, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30644118

RESUMO

Caligus rogercresseyi generates the greatest losses in the salmon industry in Chile. The relationship between salmon farming and sea lice is made up of various components: the parasite, host, environment and farming practices, which make it difficult to identify patterns in parasite population dynamics to define prevention and control strategies. The objectives of this study were to analyse and compare the effect of farming, sanitary practices and environmental variables on the abundance of gravid females (GF) and juveniles (JUV) of C. rogercresseyi on Salmo salar in three Salmon Neighborhood Areas (SNAs) in Region 10, south of Chile. Linear mixed-effects models of the negative binomial distribution were used to evaluate the effect of the different explanatory variables on GF and JUV. Productive variables were the key drivers explaining the abundance of GF and JUV. Results suggest that C. rogercresseyi is not controlled and JUV are persistent in the three SNAs, and sanitary practices do not control the dissemination of the parasite among sites. Environmental variables had a low impact on sea lice abundance. There is a need to perform analysis for modelling of parasite population dynamics to improve Integrated Pest Management, including changes in the governance to achieve an effective prevention and control.


Assuntos
Copépodes/fisiologia , Ectoparasitoses/parasitologia , Doenças dos Peixes/parasitologia , Salmo salar/parasitologia , Animais , Aquicultura/métodos , Chile/epidemiologia , Copépodes/crescimento & desenvolvimento , Ectoparasitoses/prevenção & controle , Feminino , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/prevenção & controle , Dinâmica Populacional
3.
Environ Monit Assess ; 191(2): 53, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30617928

RESUMO

Globally, Chile is the second largest producer of mussels, with 99% of production concentrated in the inland sea of the Los Lagos Region, Southern Chile. This study reveals that seasons produce a drastic difference in the cadmium concentration (Cd) in marine mussels in bay, channel, and fjord ecosystems in this area. As the global mussel industry continues its rapid expansion, a complete understanding of cadmium pathways is critical in order to minimize the cadmium content in harvests. In this study, biweekly sampling was conducted in Chiloé (Southern Chile), during five consecutive seasons from June 2014 to November 2015. Cadmium in the soft tissues (ST) and in the content of the digestive gland (CDG) of Mytilus chilensis were investigated, in addition to resuspensions and seston to determine the effect of the seasons on metal bioassimilation capacity. In spring, the (Cd) between CDG and ST varied by approximately 2 mg Cd kg-1 dry mass (DM). In summer and autumn, the (Cd) in CDG increased from 3 to 6 mg Cd kg-1 while the (Cd) in ST decreased from 2.5 to 1.5 mg Cd kg-1 DM. The three ecosystems showed the same cadmium bioconcentration trends in all seasons, revealing coherent global trends. These findings should caution the industry and coastal populations about the seasonal variability and intensity of cadmium metal transfer to biofilters, especially because of the adverse effects of cadmium consumption on human health. Additionally, this study found that mussels in natural beds concentrate more Cd (> 1 mg Cd kg-1 DM) than in industrial facilities. Multiregression analysis showed and explained the cadmium in CDG for three ecosystems: channel (R2 0.9537), bay (R2 0.5962), and fjord (R2 0.4009). The independent variable nocturnal seston was able to explain the increase in cadmium.


Assuntos
Aquicultura , Cádmio/metabolismo , Monitoramento Ambiental , Mytilus/metabolismo , Poluentes Químicos da Água/metabolismo , Poluição Química da Água/estatística & dados numéricos , Animais , Cádmio/análise , Chile , Alimentos Marinhos/análise , Estações do Ano , Poluentes Químicos da Água/análise
4.
Harmful Algae ; 115: 102228, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35623686

RESUMO

Dinophysis acuminata and D. acuta, which produce diarrheogenic toxins and pectenotoxins in southern Chile, display site-specific differences in interannual variability (2006 - 2018) in Reloncaví, Pitipalena and Puyuhuapi fjords (41 - 46 °S), Chilean Patagonia. Linear Models show decreasing trends in rainfall and river discharge. Latitudinal decreasing gradients in SST temperature and vertical salinity gradients were observed. A brackish water layer (FW salinity <11 psu), permanently present in Reloncaví, decreased in thickness with time in Pitipalena and was usually absent in Puyuhuapi, the only fjord where D. acuta reached bloom (>103 cells L‒1) densities every season. Dinophysis acuminata, associated with toxin profiles in shellfish that include only pectenotoxins, bloomed everywhere with a poleward increasing gradient. Absence of the FW layer provides a possible index of risk for D. acuta blooms. An apparent poleward shift of D. acuta populations, responsible for DSP outbreaks in Reloncaví in the 1970s, and the recent EU deregulation of pectenotoxins will have a positive impact on the mussel industry in Los Lagos Region. Changes to ongoing monitoring protocols to improve risk assessment capabilities are suggested.


Assuntos
Bivalves , Dinoflagellida , Animais , Dinoflagellida/fisiologia , Estuários , Estações do Ano , Frutos do Mar/análise
5.
Toxins (Basel) ; 14(11)2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36422960

RESUMO

Harmful algal blooms, in particular recurrent blooms of the dinoflagellate Alexandrium catenella, associated with paralytic shellfish poisoning (PSP), frequently limit commercial shellfish harvests, resulting in serious socio-economic consequences. Although the PSP-inducing species that threaten the most vulnerable commercial species of shellfish are very patchy and spatially heterogeneous in their distribution, the spatial and temporal scales of their effects have largely been ignored in monitoring programs and by researchers. In this study, we examined the spatial and temporal dynamics of PSP toxicity in the clam (Ameghinomya antiqua) in two fishing grounds in southern Chile (Ovalada Island and Low Bay). During the summer of 2009, both were affected by an intense toxic bloom of A. catenella (up to 1.1 × 106 cells L-1). Generalized linear models were used to assess the potential influence of different environmental variables on the field detoxification rates of PSP toxins over a period of 12 months. This was achieved using a four parameter exponential decay model to fit and compare field detoxification rates per sampling site. The results show differences in the spatial variability and temporal dynamics of PSP toxicity, given that greater toxicities (+10-fold) and faster detoxification (20% faster) are observed at the Ovalada Island site, the less oceanic zone, and where higher amounts of clam are annually produced. Our observations support the relevance of considering different spatial and temporal scales to obtain more accurate assessments of PSP accumulation and detoxification dynamics and to improve the efficacy of fisheries management after toxic events.


Assuntos
Dinoflagellida , Intoxicação por Frutos do Mar , Toxinas Biológicas , Humanos , Frutos do Mar , Proliferação Nociva de Algas
6.
Mar Pollut Bull ; 184: 114103, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36115195

RESUMO

Harmful Algal Blooms (HAB) pose a severe socio-economic problem worldwide. The dinoflagellate species Alexandrium catenella produces potent neurotoxins called saxitoxins (STXs) and its blooms are associated with the human intoxication named Paralytic Shellfish Poisoning (PSP). Knowing where and how these blooms originate is crucial to predict blooms. Most studies in the Chilean Patagonia, were focused on coastal areas, considering that blooms from the adjacent oceanic region are almost non-existent. Using a combination of field studies and modelling approaches, we first evaluated the role of the continental shelf off northern Chilean Patagonia as a source of A. catenella resting cysts, which may act as inoculum for their toxic coastal blooms. This area is characterized by a seasonal upwelling system with positive Ekman pumping during spring-summer, and by the presence of six major submarine canyons. We found out that these submarine canyons increase the vertical advection of bottom waters, and thus, significantly enhance the process of coastal upwelling. This is a previously unreported factor, among those involved in bloom initiation. This finding put this offshore area at high risk of resuspension of resting cysts of A. catenella. Here, we discuss in detail the physical processes promoting this resuspension.


Assuntos
Cistos , Dinoflagellida , Intoxicação por Frutos do Mar , Humanos , Chile , Proliferação Nociva de Algas , Oceanos e Mares
7.
Mar Pollut Bull ; 174: 113234, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34922228

RESUMO

Fish-killing blooms of Heterosigma akashiwo and Pseudochattonella verruculosa have been devastating for the farmed salmon industry, but in Southern Chile the conditions that promote the growth and toxicity of these microalgae are poorly understood. This study examined the effects of different combinations of temperature (12, 15, 18 °C) and salinity (10, 20, 30 psu) on the growth of Chilean strains of these two species. The results showed that the optimal growth conditions for H. akashiwo and P. verruculosa differed, with a maximum rate of 0.99 day-1 obtained at 15 °C and a salinity of 20 psu for H. akashiwo, and a maximum rate of 1.06 day-1 obtained at 18 °C and a salinity of 30 psu for P. verruculosa. Cytotoxic assays (2 × 101 - 2 × 105 cell mL-1; cells, filtrates, and cell lysates) performed at salinities of 20 and 30 psu showed a 100% reduction in the viability of embryonic fish cells exposed to intact cells of H. akashiwo and a 39% reduction following exposure to culture filtrates of P. verruculosa. Differences in the fish-killing mechanisms (direct cell contact vs. extracellular substances) and physiological traits of H. akashiwo and P. verruculosa explain the recent occurrence of very large blooms under contrasting (cold-brackish vs. hot-salty) extreme climate conditions in Chile.


Assuntos
Microalgas , Estramenópilas , Animais , Homicídio , Salinidade , Temperatura
8.
Sci Rep ; 11(1): 579, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436740

RESUMO

Macro- and micro-environmental factors modulate parasite loads in fish, determining parasitic abundances, diversity, and interaction dynamics. In this study, seasonal variations in larval ectoparasites on fish larvae in the northern Humboldt Current System (HCS) were evaluated using a delta-gamma generalized linear model to predict their occurrence frequencies. Fish larvae were collected from two nearshore areas during austral spring-summer and autumn-winter. Only five (of 38) larval fish species were parasitized by copepods: Gobiesox marmoratus, Ophiogobius jenynsi, Helcogrammoides cunninghami, Myxodes sp., and Auchenionchus crinitus. A binomial model showed that the presence/absence of parasitized fish larvae varied among the fish species and their larval abundances, while a positive delta-gamma model showed that ectoparasite frequency varied among the seasons and fish species. Seasonal variations in parasitized fish larvae frequency could be associated with host and parasite reproductive processes, which are related to oceanographic features responsible for larval retention and subsequent higher infestation probabilities. Host length was positively correlated with ectoparasite length, suggesting early infection and combined growth until the detachment of the ectoparasite. Our results suggest that infestation patterns in larval fish species can be identified using delta-gamma models and that they respond to local (retention) and high-scale (HCS) processes.


Assuntos
Ectoparasitoses/epidemiologia , Ectoparasitoses/parasitologia , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/parasitologia , Peixes/parasitologia , Larva/parasitologia , Animais , Ecossistema , Interações Hospedeiro-Parasita , Modelos Lineares , Oceanos e Mares/epidemiologia , Estações do Ano
9.
Mar Pollut Bull ; 129(2): 913-917, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29110894

RESUMO

Cadmium is present in agricultural soil composition and is assimilated by plants. The mussel industry generates large volumes of calcareous valves as a byproduct of processing in factories. This solid waste is ground, stored and disposed of in the form of agricultural supplies near production areas in almost all regions of the world. Cd content was recorded in these calcareous substrate by-products of industrial processes. In this study, mussel shells were investigated in three areas in the sea of Chile; two areas with high aquaculture activity and one in a non-production area. Mass Spectrometry was used for [Cd] readings. There are no significant differences (p=0.92) in [Cd] between the studied areas. Additionally, the [Cd] observed in valves was also similar relative to different depths. The low [Cd] observed in valves (~0.014±0.0049mgCdkg-1 dry) suggests the potential use of this industrial byproduct in agricultural applications.


Assuntos
Exoesqueleto/química , Cádmio/análise , Monitoramento Ambiental/métodos , Mytilus edulis/química , Poluentes Químicos da Água/análise , Animais , Aquicultura , Chile , Fertilizantes , Resíduos Industriais , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA