Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ann Ist Super Sanita ; 59(1): 68-75, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36974707

RESUMO

INTRODUCTION: Mono-(2-ethylhexyl) phthalate (MEHP) represents a toxicological risk for marine organisms due to its widespread presence in aquatic environments. METHODS: MEHP effects on cell viability, cell death and genotoxicity were investigated on the DLEC cell line, derived from early embryos of the European sea bass Dicentrarchus labrax L. RESULTS: A dose-dependent cytotoxic effect, with no induction of necrotic process, except at its highest concentration, was observed. Moreover, chromosomal instability was detected, both in binucleated and mononucleated cells, coupled with a minor inhibition of cell proliferation, whereas genomic instability was not revealed. To our knowledge, the overall results suggest the first evidence of a possible aneugenic effect of this compound in the DLEC cell line, that is the induction of chromosomal loss events without the induction of primary DNA damage. CONCLUSIONS: MEHP should be considered more harmful than its parent compound DEHP, because it induces genomic instability in the DLEC cell line without triggering cell death.


Assuntos
Organismos Aquáticos , Bass , Instabilidade Cromossômica , Citotoxinas , Mutagênicos , Organismos Aquáticos/citologia , Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/metabolismo , Bass/embriologia , Bass/genética , Linhagem Celular , Citotoxinas/toxicidade , Mutagênicos/toxicidade , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Instabilidade Cromossômica/efeitos dos fármacos , Instabilidade Cromossômica/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Relação Dose-Resposta a Droga , Dano ao DNA
2.
Mar Pollut Bull ; 149: 110492, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31437615

RESUMO

Marine antifouling paints (MAPs) are widely used to prevent organisms from fouling vessel hulls. When scraped from vessels as part of regular maintenance, MAP particles discharged into the seawater become a source of toxic substances, like copper (Cu), to the environment, and biocides leaching from them are known to cause toxic effects on non-target organisms. We investigated the toxicity of MAP particles collected from a Bermuda boatyard on local copepod communities using two experiments. Copepod survival, Chlorophyll a and total dissolved Cu concentrations were measured before and after MAP particles addition. In an acute toxicity test, the addition of 0.3 g/L of MAP particles resulted in 0% copepods survival within 88 h and increased dissolved Cu by 1.8 µM. A significant inverse relationship was observed between copepod survival and MAP particles quantity, highlighting the toxic effects of MAP particles from boat maintenance on copepod communities in the surrounding seawater.


Assuntos
Copépodes , Cobre , Desinfetantes , Animais , Bermudas , Clorofila A , Copépodes/efeitos dos fármacos , Cobre/farmacologia , Cobre/toxicidade , Desinfetantes/farmacologia , Desinfetantes/toxicidade , Pintura , Água do Mar , Navios , Testes de Toxicidade Aguda , Poluentes Químicos da Água/análise
3.
Toxicol In Vitro ; 56: 118-125, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30685479

RESUMO

Marine litter is extensively distributed in the marine environment, and plastic debris, of which litter is mostly composed, can be a major source of pollutants. Among them, Di(2-ethylhexyl)-phthalate (DEHP) is the most abundantly used plastic additive, and it has been reported to affect biochemical processes both in humans and wildlife; however, studies on its toxicological effects on marine organisms are still scarce. In this survey, we studied the cytotoxic, genotoxic, and mutagenic effects of DEHP in European sea bass embryonic cell line (DLEC) by applying specific in vitro tests. Results showed a significant decrease in cell viability starting at 0.01 mM of DEHP after 24 h together with a significant increase in apoptosis and necrosis, morphological changes and cell detachment. Consistently, we detected a moderate increase in DNA strand breaks from 0.02 mM, and a dose-dependent increase in of micronucleus frequency from 0.01 mM, accompanied by a significant inhibition of cell proliferation, which suggested a possible aneugenic effect of this phthalate. Our results demonstrate that in vitro exposure to DEHP had a dose-dependent cytotoxic and genotoxic effects in DLEC cell line, encouraging further investigation into its effects in in vivo and/or ex vivo cell systems of marine organisms.


Assuntos
Dietilexilftalato/toxicidade , Mutagênicos/toxicidade , Plastificantes/toxicidade , Animais , Bass , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Embrião não Mamífero , Testes para Micronúcleos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA