RESUMO
Lung cancer is the most frequent cancer with an aggressive clinical course and high mortality rates. Most cases are diagnosed at advanced stages when treatment options are limited and the efficacy of chemotherapy is poor. The disease has a complex and heterogeneous background with non-small-cell lung cancer (NSCLC) accounting for 85% of patients and lung adenocarcinoma being the most common histological subtype. Almost 30% of adenocarcinomas of the lung are driven by an activating Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation. The ability to inhibit the oncogenic KRAS has been the holy grail of cancer research and the search for inhibitors is immensely ongoing as KRAS-mutated tumors are among the most aggressive and refractory to treatment. Therapeutic strategies tailored for KRAS+ NSCLC rely on the blockage of KRAS functional output, cellular dependencies, metabolic features, KRAS membrane associations, direct targeting of KRAS and immunotherapy. In this review, we provide an update on the most recent advances in anti-KRAS therapy for lung tumors with mechanistic insights into biological diversity and potential clinical implications.
Assuntos
Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Quinases Proteína-Quinases Ativadas por AMP , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Terapia de Alvo Molecular , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismoRESUMO
Oncogenic K-RAS has been difficult to target and currently there is no K-RAS-based targeted therapy available for patients suffering from K-RAS-driven lung adenocarcinoma (AC). Alternatively, targeting K-RAS-downstream effectors, K-RAS-cooperating signaling pathways or cancer hallmarks, such as tumor-promoting inflammation, has been shown to be a promising therapeutic strategy. Since the JAK-STAT pathway is considered to be a central player in inflammation-mediated tumorigenesis, we investigated here the implication of JAK-STAT signaling and the therapeutic potential of JAK1/2 inhibition in K-RAS-driven lung AC. Our data showed that JAK1 and JAK2 are activated in human lung AC and that increased activation of JAK-STAT signaling correlated with disease progression and K-RAS activity in human lung AC. Accordingly, administration of the JAK1/2 selective tyrosine kinase inhibitor ruxolitinib reduced proliferation of tumor cells and effectively reduced tumor progression in immunodeficient and immunocompetent mouse models of K-RAS-driven lung AC. Notably, JAK1/2 inhibition led to the establishment of an antitumorigenic tumor microenvironment, characterized by decreased levels of tumor-promoting chemokines and cytokines and reduced numbers of infiltrating myeloid derived suppressor cells, thereby impairing tumor growth. Taken together, we identified JAK1/2 inhibition as promising therapy for K-RAS-driven lung AC.
Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Inibidores de Janus Quinases/farmacologia , Janus Quinases/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fatores de Transcrição STAT/antagonistas & inibidores , Células A549 , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Progressão da Doença , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Proto-Oncogene Mas , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacosRESUMO
Upon stable cell line generation, chromosomal integration site of the vector DNA has a major impact on transgene expression. Here we apply an active gene environment, rather than specified genetic elements, in expression vectors used for random integration. We generated a set of Bacterial Artificial Chromosome (BAC) vectors with different open chromatin regions, promoters and gene regulatory elements and tested their impact on recombinant protein expression in CHO cells. We identified the Rosa26 BAC as the most efficient vector backbone showing a nine-fold increase in both polyclonal and clonal production of the human IgG-Fc. Clonal protein production was directly proportional to integrated vector copy numbers and remained stable during 10 weeks without selection pressure. Finally, we demonstrated the advantages of BAC-based vectors by producing two additional proteins, HIV-1 glycoprotein CN54gp140 and HIV-1 neutralizing PG9 antibody, in bioreactors and shake flasks reaching a production yield of 1 g/l.
Assuntos
Cromossomos Artificiais Bacterianos , Vetores Genéticos , Proteínas Recombinantes/biossíntese , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/genética , Células CHO , Cricetinae , Cricetulus , Eucromatina , Glicoproteínas/biossíntese , Glicoproteínas/genética , Anticorpos Anti-HIV/biossíntese , Anticorpos Anti-HIV/genética , HIV-1/genética , HIV-1/imunologia , Proteínas do Vírus da Imunodeficiência Humana/biossíntese , Proteínas do Vírus da Imunodeficiência Humana/genética , Humanos , Fragmentos Fc das Imunoglobulinas/biossíntese , Fragmentos Fc das Imunoglobulinas/genética , Proteínas Recombinantes/genéticaRESUMO
A20 protects against pathologic vascular remodeling by inhibiting the inflammatory transcription factor NF-κB. A20's function has been attributed to ubiquitin editing of receptor-interacting protein 1 (RIP1) to influence activity/stability. The validity of this mechanism was tested using a murine model of transplant vasculopathy and human cells. Mouse C57BL/6 aortae transduced with adenoviruses containing A20 (or ß-galactosidase as a control) were allografted into major histocompatibility complex-mismatched BALB/c mice. Primary endothelial cells, smooth muscle cells, or transformed epithelial cells (all human) were transfected with wild-type A20 or with catalytically inactive mutants as a control. NF-κB activity and intracellular localization of RIP1 was monitored by reporter gene assay, immunofluorescent staining, and Western blotting. Native and catalytically inactive versions of A20 had similar inhibitory effects on NF-κB activity (-70% vs. -76%; P > 0.05). A20 promoted localization of RIP1 to insoluble aggresomes in murine vascular allografts and in human cells (53% vs. 0%) without altering RIP1 expression, and this process was increased by the assembly of polyubiquitin chains (87% vs. 28%; P < 0.05). A20 captures polyubiquitinated signaling intermediaries in insoluble aggresomes, thus reducing their bioavailability for downstream NF-κB signaling. This novel mechanism contributes to protection from vasculopathy in transplanted organs treated with exogenous A20.
Assuntos
Aorta/transplante , Artérias Carótidas/cirurgia , Cisteína Endopeptidases/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Inflamação/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , NF-kappa B/metabolismo , Agregados Proteicos/fisiologia , Adenoviridae/genética , Aloenxertos , Animais , Aorta/metabolismo , Aorta/patologia , Western Blotting , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Proliferação de Células , Células Cultivadas , Cisteína Endopeptidases/genética , Proteínas Ativadoras de GTPase/genética , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/metabolismo , Rejeição de Enxerto/patologia , Histocompatibilidade , Humanos , Imunidade Inata/imunologia , Técnicas Imunoenzimáticas , Inflamação/metabolismo , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , NF-kappa B/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Ubiquitina/metabolismo , UbiquitinaçãoRESUMO
IFNγ signaling in endothelial (EC) and smooth muscle cells (SMC) is a key culprit of pathologic vascular remodeling. The impact of NF-κB inhibitory protein A20 on IFNγ signaling in vascular cells remains unknown. In gain- and loss-of-function studies, A20 inversely regulated expression of IFNγ-induced atherogenic genes in human EC and SMC by modulating STAT1 transcription. In vivo, inadequate A20 expression in A20 heterozygote mice aggravated intimal hyperplasia following partial carotid artery ligation. This outcome uniquely associated with increased levels of Stat1 and super-induction of Ifnγ-dependent genes. Transcriptome analysis of the aortic media from A20 heterozygote versus wild-type mice revealed increased basal Ifnß signaling as the likely cause for higher Stat1 transcription. We confirmed higher basal IFNß levels in A20-silenced human SMC and showed that neutralization or knockdown of IFNß abrogates heightened STAT1 levels in these cells. Upstream of IFNß, A20-silenced EC and SMC demonstrated higher levels of phosphorylated/activated TANK-binding kinase-1 (TBK1), a regulator of IFNß transcription. This suggested that A20 knockdown increased STAT1 transcription by enhancing TBK1 activation and subsequently basal IFNß levels. Altogether, these results uncover A20 as a key physiologic regulator of atherogenic IFNγ/STAT1 signaling. This novel function of A20 added to its ability to inhibit nuclear factor-κB (NF-κB) activation solidifies its promise as an ideal therapeutic candidate for treatment and prevention of vascular diseases. In light of recently discovered A20/TNFAIP3 (TNFα-induced protein 3) single nucleotide polymorphisms that impart lower A20 expression or function, these results also qualify A20 as a reliable clinical biomarker for vascular risk assessment.
Assuntos
Aterosclerose/metabolismo , Cisteína Endopeptidases/fisiologia , Proteínas de Ligação a DNA/metabolismo , Interferon beta/metabolismo , Interferon gama/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Músculo Liso Vascular/metabolismo , Proteínas Nucleares/metabolismo , Animais , Anti-Inflamatórios/química , Aorta/patologia , Movimento Celular , Constrição Patológica/metabolismo , Cisteína Endopeptidases/metabolismo , Humanos , Inflamação , Camundongos , Fosforilação , Polimorfismo de Nucleotídeo Único , RNA Interferente Pequeno/metabolismo , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Células U937RESUMO
A1/Bfl-1 is a NF-κB dependent, anti-apoptotic Bcl-2 family member that contains four Bcl-2 homology domains (BH) and an amphipathic C-terminal domain, and is expressed in endothelial cells (EC). Based on NF-κB reporter assays in bovine aortic EC, we have previously demonstrated that A1, like Bcl-2 and Bcl-xL, inhibits NF-κB activation. These results, however, do not fully translate when evaluating the cell's own NF-κB machinery in human EC overexpressing A1 by means of recombinant adenovirus (rAd.) mediated gene transfer. Indeed, overexpression of full-length A1 in human umbilical vein EC (HUVEC), and human dermal microvascular EC (HDMEC) failed to inhibit NF-κB activation. However, overexpression of a mutant lacking the C-terminal domain of A1 (A1ΔC) demonstrated a potent NF-κB inhibitory effect in these cells. Disparate effects of A1 and A1ΔC on NF-κB inhibition in human EC correlated with mitochondrial (A1) versus non-mitochondrial (A1ΔC) localization. In contrast, both full-length A1 and A1ΔC protected EC from staurosporine (STS)-induced cell death, indicating that mitochondrial localization was not necessary for A1's cytoprotective function in human EC. In conclusion, our data uncover a regulatory role for the C-terminal domain of A1 in human EC: anchoring A1 to the mitochondrion, which conserves but is not necessary for its cytoprotective function, or by its absence freeing A1 from the mitochondrion and uncovering an additional anti-inflammatory effect.
Assuntos
Anti-Inflamatórios/metabolismo , Derme/metabolismo , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Apoptose , Western Blotting , Bovinos , Proliferação de Células , Derme/citologia , Endotélio Vascular/citologia , Imunofluorescência , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Luciferases/metabolismo , Antígenos de Histocompatibilidade Menor , NF-kappa B/genética , NF-kappa B/metabolismo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-bcl-2/genéticaRESUMO
BACKGROUND: A20 (TNFAIP3) is a pleiotropic NFκB-dependent gene that terminates NFκB activation in response to inflammatory stimuli. The potent anti-inflammatory properties of A20 are well characterized in several organs. However, little is known about its role in the brain. In this study, we investigated the brain phenotype of A20 heterozygous (HT) and knockout (KO) mice. METHODS: The inflammatory status of A20 wild type (WT), HT and KO brain was determined by immunostaining, quantitative PCR, and Western blot analysis. Cytokines secretion was evaluated by ELISA. Quantitative results were statistically analyzed by ANOVA followed by a post-hoc test. RESULTS: Total loss of A20 caused remarkable reactive microgliosis and astrogliosis, as determined by F4/80 and GFAP immunostaining. Glial activation correlated with significantly higher mRNA and protein levels of the pro-inflammatory molecules TNF, IL-6, and MCP-1 in cerebral cortex and hippocampus of A20 KO, as compared to WT. Basal and TNF/LPS-induced cytokine production was significantly higher in A20 deficient mouse primary astrocytes and in a mouse microglia cell line. Brain endothelium of A20 KO mice demonstrated baseline activation as shown by increased vascular immunostaining for ICAM-1 and VCAM-1, and mRNA levels of E-selectin. In addition, total loss of A20 increased basal brain oxidative/nitrosative stress, as indicated by higher iNOS and NADPH oxidase subunit gp91phox levels, correlating with increased protein nitration, gauged by nitrotyrosine immunostaining. Notably, we also observed lower neurofilaments immunostaining in A20 KO brains, suggesting higher susceptibility to axonal injury. Importantly, A20 HT brains showed an intermediate phenotype, exhibiting considerable, albeit not statistically significant, increase in markers of basal inflammation when compared to WT. CONCLUSIONS: This is the first characterization of spontaneous neuroinflammation caused by total or partial loss of A20, suggesting its key role in maintenance of nervous tissue homeostasis, particularly control of inflammation. Remarkably, mere partial loss of A20 was sufficient to cause chronic, spontaneous low-grade cerebral inflammation, which could sensitize these animals to neurodegenerative diseases. These findings carry strong clinical relevance in that they question implication of identified A20 SNPs that lower A20 expression/function (phenocopying A20 HT mice) in the pathophysiology of neuroinflammatory diseases.
Assuntos
Encéfalo/metabolismo , Cisteína Endopeptidases/deficiência , Citocinas/metabolismo , Encefalite/genética , Encefalite/patologia , Regulação da Expressão Gênica/genética , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Encéfalo/patologia , Células Cultivadas , Cisteína Endopeptidases/genética , Lesão Axonal Difusa/etiologia , Lesão Axonal Difusa/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lipopolissacarídeos/farmacologia , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Prosencéfalo/citologia , Receptores de Vasopressinas/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismoRESUMO
The A20 protein has emerged as an important negative regulator of Toll like receptor (TLR) and retinoic acid-inducible gene 1 (RIG-I)-mediated anti-viral signaling. A20 functions both as a RING-type E3 ubiquitin ligase and as a de-ubiquitinating enzyme. Nuclear factor kappa B (NF-kappaB) and interferon regulatory factor (IRF) pathways are targeted by A20 through mechanisms that appear to be both overlapping and distinct, resulting in the downregulation of interferon alpha/beta (IFNalpha/beta) production. This review specifically details the impact of A20 on the cytosolic RIG-I/MDA5 pathway, a process that is less understood than that of NF-kappaB but is essential for the regulation of the innate immune response to viral infection.
Assuntos
Proteínas de Ligação a DNA/fisiologia , Imunidade Inata/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas Nucleares/fisiologia , Vírus/imunologia , Humanos , Interferon-alfa/metabolismo , Interferon beta/metabolismo , NF-kappa B/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , UbiquitinaçãoRESUMO
Cardiovascular disease (CVD) is the biggest killer in the Western World despite significant advances in understanding its molecular underpinnings. Chronic inflammation, the classical hallmark of atherogenesis is thought to play a key pathogenic role in the development of atherosclerotic lesions from initiation of fatty streaks to plaque rupture. Over-representation of mostly pro-inflammatory nuclear factor kappa B (NF-kappaB) target genes within atherosclerotic lesions has led to the common-held belief that excessive NF-kappaB activity promotes and aggravates atherogenesis. However, mouse models lacking various proteins involved in NF-kappaB signaling have often resulted in conflicting findings, fueling additional investigations to uncover the molecular involvement of NF-kappaB and its target genes in atherogenesis. In this chapter we will review the role of the NF-kappaB-regulated, yet potent NF-kappaB inhibitory and anti-inflammatory gene A20/TNFAIP3 in atherogenesis, and highlight the potential use of its atheroprotective properties for the prevention and treatment of cardiovascular diseases.
Assuntos
Aterosclerose/fisiopatologia , Doenças Cardiovasculares/fisiopatologia , Proteínas de Ligação a DNA/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas Nucleares/fisiologia , Animais , Citoproteção , Feminino , Humanos , Masculino , Camundongos , Músculo Liso Vascular/patologia , NF-kappa B/fisiologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Fator de Necrose Tumoral alfa/fisiologiaRESUMO
Lung cancer, the leading cause of cancer mortality, exhibits diverse histological subtypes and genetic complexities. Numerous preclinical mouse models have been developed to study lung cancer, but data from these models are disparate, siloed, and difficult to compare in a centralized fashion. Here we established the Lung Cancer Mouse Model Database (LCMMDB), an extensive repository of 1,354 samples from 77 transcriptomic datasets covering 974 samples from genetically engineered mouse models (GEMMs), 368 samples from carcinogen-induced models, and 12 samples from a spontaneous model. Meticulous curation and collaboration with data depositors have produced a robust and comprehensive database, enhancing the fidelity of the genetic landscape it depicts. The LCMMDB aligns 859 tumors from GEMMs with human lung cancer mutations, enabling comparative analysis and revealing a pressing need to broaden the diversity of genetic aberrations modeled in GEMMs. Accompanying this resource, we developed a web application that offers researchers intuitive tools for in-depth gene expression analysis. With standardized reprocessing of gene expression data, the LCMMDB serves as a powerful platform for cross-study comparison and lays the groundwork for future research, aiming to bridge the gap between mouse models and human lung cancer for improved translational relevance.
RESUMO
Constitutively activated rat sarcoma (RAS) GTPases are one of the major drivers of tumor growth and are difficult drug targets. The glucocorticoid receptor (GR), a nuclear receptor primarily acting in the nucleus, is a potent modulator of inflammation and regulator of metabolism and cell growth. Emerging evidence has revealed that GR modulates RAS-dependent signaling and RAS activation. The unliganded GR decreases RAS activation, and, upon ligand binding, GR leaves RAS complexes, is translocated into the nucleus, and unleashes the activation of RAS and its downstream pathways. GR forms a complex with RAS and RAF1 and their associated proteins, such as members of the 14-3-3 family of adapter proteins. The exploration of RAS-GR complex formation and maintenance will help to develop much-needed breakthroughs in oncogenic RAS biology and thus help to alleviate tumor growth and burden.
Assuntos
Neoplasias , Receptores de Glucocorticoides , Humanos , Receptores de Glucocorticoides/metabolismo , Glucocorticoides/metabolismo , Núcleo Celular/metabolismo , Transdução de Sinais , Neoplasias/metabolismoRESUMO
Ribosomally synthesized and post-translationally modified peptides, such as plant cyclotides, are a diverse group of natural products well known as templates in drug discovery and therapeutic lead development. The cyclotide kalata B1 (kB1) has previously been discovered as immunosuppressive agent on T-lymphocytes, and a synthetic version of this peptide, [T20K]kB1 (T20K), has been effective in reducing clinical symptoms, such as inflammation and demyelination, in a mouse model of multiple sclerosis. Based on its T-cell modulatory impact we studied the effects of T20K and several analogs on the proliferation of anaplastic large cell lymphoma (ALCL), a heterogeneous group of clinically aggressive diseases associated with poor prognosis. T20K, as a prototype drug candidate, induces apoptosis and a proliferation arrest in human lymphoma T-cell lines (SR786, Mac-2a and the Jurkat E6.1) in a concentration dependent fashion, at least partially via increased STAT5 and p53 signaling. In contrary to its effect on IL-2 signaling in lymphocytes, the cytokine levels are not altered in lymphoma cells. In vivo mouse experiments revealed a promising activity of T20K on these cancer cells including decreased tumor weight and increased apoptosis. This study opens novel avenues for developing cyclotide-based drug candidates for therapy of patients with ALCL.
Assuntos
Ciclotídeos , Linfoma Anaplásico de Células Grandes , Animais , Ciclotídeos/farmacologia , Citocinas/farmacologia , Humanos , Linfoma Anaplásico de Células Grandes/tratamento farmacológico , Camundongos , Linfócitos TRESUMO
Mutations that activate members of the RAS family of GTPases are associated with various cancers and drive tumor growth. The glucocorticoid receptor (GR), a member of the nuclear receptor family, has been proposed to interact with and inhibit the activation of components of the PI3K-AKT and MAPK pathways downstream of RAS. In the absence of activating ligands, we found that GR was present in cytoplasmic KRAS-containing complexes and inhibited the activation of wild-type and oncogenic KRAS in mouse embryonic fibroblasts and human lung cancer A549 cells. The DNA binding domain of GR was involved in the interaction with KRAS, but GR-dependent inhibition of RAS activation did not depend on the nuclear translocation of GR. The addition of ligand released GR-dependent inhibition of RAS, AKT, the MAPK p38, and the MAPKK MEK. CRISPR-Cas9-mediated deletion of GR in A549 cells enhanced tumor growth in xenografts in mice. Patient samples of non-small cell lung carcinomas showed lower expression of NR3C1, the gene encoding GR, compared to adjacent normal tissues and lower NR3C1 expression correlated with a worse disease outcome. These results suggest that glucocorticoids prevent the ability of GR to limit tumor growth by inhibiting RAS activation, which has potential implications for the use of glucocorticoids in patients with cancer.
Assuntos
Neoplasias Pulmonares , Receptores de Glucocorticoides , Animais , Proliferação de Células , Fibroblastos/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismoRESUMO
IFN-α proteins have been described to originate from 14 individual genes and allelic variants. However, the exceptional diversity of IFN-α and its functional impact are still poorly understood. To characterize the biological activity of IFN-α subtypes in relation to the cellular background, we investigated the effect of IFN-α treatment in primary fibroblasts and endothelial cells of vascular or lymphatic origin. The cellular response was evaluated for 13 distinct IFN-α proteins with respect to transcript regulation of the IFN-stimulated genes (ISGs) IFIT1, ISG15, CXCL10, CXCL11 and CCL8. The IFN-α proteins displayed a remarkably consistent potency in gene induction irrespective of target gene and cellular background which led to the classification of IFN-α subtypes with low (IFN-α1), intermediate (IFN-α2a, -4a, -4b, -5, -16, -21) and high (IFN-α2b, -6, -7, -8, -10, -14) activity. The differential potency of IFN-α classes was confirmed at the ISG protein level and the functional protection of cells against influenza virus infection. Differences in IFN activity were only observed at subsaturating levels of IFN-α proteins and did not affect the time course of ISG regulation. Cell-type specific responses were apparent for distinct target genes independent of IFN-α subtype and were based on different levels of basal versus inducible gene expression. While fibroblasts presented with a high constitutive level of IFIT1, the expression in endothelial cells was strongly induced by IFN-α. In contrast, CXCL10 and CXCL11 transcript levels were generally higher in endothelial cells despite a pronounced induction by IFN-α in fibroblasts. In summary, the divergent potency of IFN-α proteins and the cell-type specific regulation of individual IFN target genes may allow for the fine tuning of cellular responses to pathogen defense.
Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Interferon-alfa/classificação , Interferon-alfa/farmacologia , Especificidade de Órgãos/genética , Fatores de Transcrição/genética , Antivirais/metabolismo , Humanos , Cinética , Masculino , Especificidade de Órgãos/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo , Fatores de Transcrição/metabolismoRESUMO
Rationale: Decreased expression and activity of endothelial nitric oxide synthase (eNOS) in response to inflammatory and metabolic insults is the hallmark of endothelial cell (EC) dysfunction that preludes the development of atherosclerosis and hypertension. We previously reported the atheroprotective properties of the ubiquitin-editing and anti-inflammatory protein A20, also known as TNFAIP3, in part through interrupting nuclear factor-kappa B (NF-κB) and interferon signaling in EC and protecting these cells from apoptosis. However, A20's effect on eNOS expression and function remains unknown. In this study, we evaluated the impact of A20 overexpression or knockdown on eNOS expression in EC, at baseline and after tumor necrosis factor (TNF) treatment, used to mimic inflammation. Methods and Results: A20 overexpression in human coronary artery EC (HCAEC) significantly increased basal eNOS mRNA (qPCR) and protein (western blot) levels and prevented their downregulation by TNF. Conversely, siRNA-induced A20 knockdown decreased eNOS mRNA levels, identifying A20 as a physiologic regulator of eNOS expression. By reporter assays, using deletion and point mutants of the human eNOS promoter, and knockdown of eNOS transcriptional regulators, we demonstrated that A20-mediated increase of eNOS was transcriptional and relied on increased expression of the transcription factor Krüppel-like factor (KLF2), and upstream of KLF2, on activation of extracellular signal-regulated kinase 5 (ERK5). Accordingly, ERK5 knockdown or inhibition significantly abrogated A20's ability to increase KLF2 and eNOS expression. In addition, A20 overexpression in HCAEC increased eNOS phosphorylation at Ser-1177, which is key for the function of this enzyme. Conclusions: This is the first report demonstrating that overexpression of A20 in EC increases eNOS transcription in an ERK5/KLF2-dependent manner and promotes eNOS activating phosphorylation. This effect withstands eNOS downregulation by TNF, preventing EC dysfunction in the face of inflammation. This novel function of A20 further qualifies its therapeutic promise to prevent/treat atherosclerosis.
RESUMO
Despite the essential role secretory IgAs play in the defense against pathogenic invasion and the proposed value of recombinant secretory IgAs as novel therapeutics, currently there are no IgA-based therapies in clinics. Secretory IgAs are complex molecules and the major bottleneck limiting their therapeutic potential is a reliable recombinant production system. In this report, we addressed this issue and established a fast and robust production method for secretory IgAs in CHO-K1 cells using BAC-based expression vectors. As a proof of principle, we produced IgAs against Clostridium difficile toxins TcdA and TcdB. Recombinant secretory IgAs produced using our expression system showed comparable titers to IgGs, widely used as therapeutic biologicals. Importantly, secretory IgAs produced using our method were functional and could efficiently neutralize Clostridium difficile toxins TcdA and TcdB. These results show that recombinant secretory IgAs can be efficiently produced, thus opening the possibility to use them as therapeutic agents in clinics.
Assuntos
Toxinas Bacterianas , Clostridioides difficile , Animais , Proteínas de Bactérias , Toxinas Bacterianas/genética , Clostridioides difficile/genética , Cricetinae , Enterotoxinas/genética , Imunoglobulina A SecretoraRESUMO
Inflammation is a well-known driver of lung tumorigenesis. One strategy by which tumor cells escape tight homeostatic control is by decreasing the expression of the potent anti-inflammatory protein tumor necrosis factor alpha-induced protein 3 (TNFAIP3), also known as A20. We observed that tumor cell intrinsic loss of A20 markedly enhanced lung tumorigenesis and was associated with reduced CD8+ T cell-mediated immune surveillance in patients with lung cancer and in mouse models. In mice, we observed that this effect was completely dependent on increased cellular sensitivity to interferon-γ (IFN-γ) signaling by aberrant activation of TANK-binding kinase 1 (TBK1) and increased downstream expression and activation of signal transducer and activator of transcription 1 (STAT1). Interrupting this autocrine feed forward loop by knocking out IFN-α/ß receptor completely restored infiltration of cytotoxic T cells and rescued loss of A20 depending tumorigenesis. Downstream of STAT1, programmed death ligand 1 (PD-L1) was highly expressed in A20 knockout lung tumors. Accordingly, immune checkpoint blockade (ICB) treatment was highly efficient in mice harboring A20-deficient lung tumors. Furthermore, an A20 loss-of-function gene expression signature positively correlated with survival of melanoma patients treated with anti-programmed cell death protein 1. Together, we have identified A20 as a master immune checkpoint regulating the TBK1-STAT1-PD-L1 axis that may be exploited to improve ICB therapy in patients with lung adenocarcinoma.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Adenocarcinoma de Pulmão/genética , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Regulação para Baixo , Humanos , Interferon gama/metabolismo , Neoplasias Pulmonares/genética , Camundongos , Transdução de SinaisRESUMO
Signal Transducer and Activator of Transcription 3 (STAT3) activation is frequently found in non-small cell lung cancer (NSCLC) patient samples/cell lines and STAT3 inhibition in NSCLC cell lines markedly impairs their survival. STAT3 also plays a pivotal role in driving tumor-promoting inflammation and evasion of anti-tumor immunity. Consequently, targeting STAT3 either directly or by inhibition of upstream regulators such as Interleukin-6 (IL-6) or Janus kinase 1/2 (JAK1/2) is considered as a promising treatment strategy for the management of NSCLC. In contrast, some studies also report STAT3 being a tumor suppressor in a variety of solid malignancies, including lung cancer. Here, we provide a concise overview of STAT3's versatile roles in NSCLC and discuss the yins and yangs of STAT3 targeting therapies.
RESUMO
Tumors have evolved mechanisms to escape anti-tumor immunosurveillance. They limit humoral and cellular immune activities in the stroma and render tumors resistant to immunotherapy. Sensitizing tumor cells to immune attack is an important strategy to revert immunosuppression. However, the underlying mechanisms of immune escape are still poorly understood. Here we discover Indoleamine-2,3-dioxygenase-1 (IDO1)+ Paneth cells in the stem cell niche of intestinal crypts and tumors, which promoted immune escape of colorectal cancer (CRC). Ido1 expression in Paneth cells was strictly Stat1 dependent. Loss of IDO1+ Paneth cells in murine intestinal adenomas with tumor cell-specific Stat1 deletion had profound effects on the intratumoral immune cell composition. Patient samples and TCGA expression data suggested corresponding cells in human colorectal tumors. Thus, our data uncovered an immune escape mechanism of CRC and identify IDO1+ Paneth cells as a target for immunotherapy.
Assuntos
Neoplasias Colorretais/patologia , Tolerância Imunológica/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Neoplasias Intestinais/patologia , Celulas de Paneth/imunologia , Fator de Transcrição STAT1/fisiologia , Animais , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Neoplasias Intestinais/imunologia , Neoplasias Intestinais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
EGFR-mutated lung adenocarcinoma patients treated with gefitinib and osimertinib show a therapeutic benefit limited by the appearance of secondary mutations, such as EGFRT790M and EGFRC797S. It is generally assumed that these secondary mutations render EGFR completely unresponsive to the inhibitors, but contrary to this, we uncovered here that gefitinib and osimertinib increased STAT3 phosphorylation (p-STAT3) in EGFRT790M and EGFRC797S tumoral cells. Interestingly, we also found that concomitant Notch inhibition with gefitinib or osimertinib treatment induced a p-STAT3-dependent strong reduction in the levels of the transcriptional repressor HES1. Importantly, we showed that tyrosine kinase inhibitor-resistant tumors, with EGFRT790M and EGFRC797S mutations, were highly responsive to the combined treatment of Notch inhibitors with gefitinib or osimertinib, respectively. Finally, in patients with EGFR mutations treated with tyrosine kinase inhibitors, HES1 protein levels increased during relapse and correlated with shorter progression-free survival. Therefore, our results offer a proof of concept for an alternative treatment to chemotherapy in lung adenocarcinoma osimertinib-treated patients after disease progression.