Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(3): e25270, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38333876

RESUMO

Nanocellulose, especially originating from a natural source, has already shown immense potential to be considered in various fields, namely packaging, papermaking, composites, biomedical engineering, flame retardant, and thermal insulating materials, etc. due to its environmental friendliness and novel functionalities. Thus, a thorough characterization of nanocellulose is a hot research topic of research communities in a view to judge its suitability to be used in a specific area. In this work, a kind of green and environment-friendly nanocellulose was successfully prepared from okra fiber through a series of multi-step chemical treatments, specifically, scouring, alkali treatment, sodium chlorite bleaching, and sulfuric acid hydrolysis. Several characterization techniques were adopted to understand the morphology, structure, thermal behavior, crystallinity, and toxicological effects of prepared nanocellulose. Obtained data revealed the formation of rod-shaped nanocellulose and compared to raw okra fiber, their size distributions were significantly smaller. X-ray diffraction (XRD) patterns displayed that compared to the crystalline region, the amorphous region in raw fiber is notably larger, and in obtained nanocellulose, the crystallinity index increased significantly. Moreover, variations in the Fourier transform infrared spectroscopy (FTIR) peaks depicted the successful removal of amorphous regions, namely, lignin and hemicelluloses from the surface of fiber. Thermostability of synthesized nanocellulose was confirmed by both Differential Scanning Calorimetry (DSC) analysis, and thermogravimetric analysis (TGA). Cytotoxicity assessment showed that the okra fiber-derived nanocellulose exhibited lower to moderate cellular toxicity in a dose-dependent manner where the LD50 value was 60.60 µg/ml.

2.
ACS Omega ; 7(35): 30841-30848, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36092629

RESUMO

Bio-derived polysaccharides, namely, chitosan (CS) and sodium alginate (SA) were considered in a layer-by-layer (LbL) deposition to construct flame retardant coatings onto the polyamide 66 (PA66) fabric surfaces. The as-prepared coatings were further modified in the impregnation process with a number of inorganic salts containing boron, nickel, and iron elements. Obtained results revealed that the simultaneously LbL-assembled and metal salt-treated fabric samples exhibited superior flame retardant performance compared to the only LbL-deposited fabric samples. The limiting oxygen index (LOI) value reached up to 25.5% of the CS-SA-iron salt treated fabric sample and the dripping tendency was completely diminished only for the LbL-metal salt modified fabric samples. Among the treated fabric samples, the CS-SA-iron-salt-modified fabric sample exhibited a maximum reduction in the peak heat release rate by 34% and handed improved and higher quality char residues, indicating a possible condensed phase flame retardant mechanism of this applied finishing. Moreover, metal salt-induced cross-linking could enhance the coating stability and durable finishes against regular home laundering where an iron-salt-treated fabric sample could retain anti-dripping properties even up to 10 laundering cycles. Thus, this pairing of bio-macromolecules (i.e., charring agent) with the metal salts in a hybrid system showed efficacy in improving the fire performance of polyamide textiles via the synergistic involvement between them.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA