Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 92(6): 4309-4316, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32073251

RESUMO

We present spin-exchange optical pumping (SEOP) using a third-generation (GEN-3) automated batch-mode clinical-scale 129Xe hyperpolarizer utilizing continuous high-power (∼170 W) pump laser irradiation and a novel aluminum jacket design for rapid temperature ramping of xenon-rich gas mixtures (up to 2 atm partial pressure). The aluminum jacket design is capable of heating SEOP cells from ambient temperature (typically 25 °C) to 70 °C (temperature of the SEOP process) in 4 min, and perform cooling of the cell to the temperature at which the hyperpolarized gas mixture can be released from the hyperpolarizer (with negligible amounts of Rb metal leaving the cell) in approximately 4 min, substantially faster (by a factor of 6) than previous hyperpolarizer designs relying on air heat exchange. These reductions in temperature cycling time will likely be highly advantageous for the overall increase of production rates of batch-mode (i.e., stopped-flow) 129Xe hyperpolarizers, which is particularly beneficial for clinical applications. The additional advantage of the presented design is significantly improved thermal management of the SEOP cell. Accompanying the heating jacket design and performance, we also evaluate the repeatability of SEOP experiments conducted using this new architecture, and present typically achievable hyperpolarization levels exceeding 40% at exponential build-up rates on the order of 0.1 min-1.

2.
J Magn Reson ; 354: 107521, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37487304

RESUMO

We report on hyperpolarization of quadrupolar (I=3/2) 131Xe via spin-exchange optical pumping. Observations of the 131Xe polarization dynamics via in situ low-field NMR show that the estimated alkali-metal/131Xe spin-exchange rates can be large enough to compete with 131Xe spin relaxation. 131Xe polarization up to 7.6±1.5% was achieved in ∼8.5×1020 spins-a ∼100-fold improvement in the total spin angular momentum-potentially enabling various applications, including: measurement of spin-dependent neutron-131Xe s-wave scattering; sensitive searches for time-reversal violation in neutron-131Xe interactions beyond the Standard Model; and surface-sensitive pulmonary MRI.

3.
J Magn Reson ; 319: 106813, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32932118

RESUMO

We present a second-generation open-source automated batch-mode 129Xe hyperpolarizer (XeUS GEN-2), designed for clinical-scale hyperpolarized (HP) 129Xe production via spin-exchange optical pumping (SEOP) in the regimes of high Xe density (0.66-2.5 atm partial pressure) and resonant photon flux (~170 W, Δλ = 0.154 nm FWHM), without the need for cryo-collection typically employed by continuous-flow hyperpolarizers. An Arduino micro-controller was used for hyperpolarizer operation. Processing open-source software was employed to program a custom graphical user interface (GUI), capable of remote automation. The Arduino Integrated Development Environment (IDE) was used to design a variety of customized automation sequences such as temperature ramping, NMR signal acquisition, and SEOP cell refilling for increased reliability. A polycarbonate 3D-printed oven equipped with a thermo-electric cooler/heater provides thermal stability for SEOP for both binary (Xe/N2) and ternary (4He-containing) SEOP cell gas mixtures. Quantitative studies of the 129Xe hyperpolarization process demonstrate that near-unity polarization can be achieved in a 0.5 L SEOP cell. For example, %PXe of 93.2 ± 2.9% is achieved at 0.66 atm Xe pressure with polarization build-up rate constant γSEOP = 0.040 ± 0.005 min-1, giving a max dose equivalent ≈ 0.11 L/h 100% hyperpolarized, 100% enriched 129Xe; %PXe of 72.6 ± 1.4% is achieved at 1.75 atm Xe pressure with γSEOP of 0.041 ± 0.001 min-1, yielding a corresponding max dose equivalent of 0.27 L/h. Quality assurance studies on this device have demonstrated the potential to refill SEOP cells hundreds of times without significant losses in performance, with average %PXe = 71.7%, (standard deviation σP = 1.52%) and mean polarization lifetime T1 = 90.5 min, (standard deviation σT = 10.3 min) over the first ~200 gas mixture refills, with sufficient performance maintained across a further ~700 refills. These findings highlight numerous technological developments and have significant translational relevance for efficient production of gaseous HP 129Xe contrast agents for use in clinical imaging and bio-sensing techniques.


Assuntos
Espectroscopia de Ressonância Magnética , Compostos Radiofarmacêuticos/síntese química , Isótopos de Xenônio/síntese química , Automação , Reprodutibilidade dos Testes , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA