Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(32): 12524-12534, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34355571

RESUMO

Iridium and ruthenium and their oxides/hydroxides are the best candidates for the oxygen evolution reaction under harsh acidic conditions owing to the low overpotentials observed for Ru- and Ir-based anodes and the high corrosion resistance of Ir-oxides. Herein, by means of cutting edge operando surface and bulk sensitive X-ray spectroscopy techniques, specifically designed electrode nanofabrication and ab initio DFT calculations, we were able to reveal the electronic structure of the active IrOx centers (i.e., oxidation state) during electrocatalytic oxidation of water in the surface and bulk of high-performance Ir-based catalysts. We found the oxygen evolution reaction is controlled by the formation of empty Ir 5d states in the surface ascribed to the formation of formally IrV species leading to the appearance of electron-deficient oxygen species bound to single iridium atoms (µ1-O and µ1-OH) that are responsible for water activation and oxidation. Oxygen bound to three iridium centers (µ3-O) remains the dominant species in the bulk but do not participate directly in the electrocatalytic reaction, suggesting bulk oxidation is limited. In addition a high coverage of a µ1-OO (peroxo) species during the OER is excluded. Moreover, we provide the first photoelectron spectroscopic evidence in bulk electrolyte that the higher surface-to-bulk ratio in thinner electrodes enhances the material usage involving the precipitation of a significant part of the electrode surface and near-surface active species.

2.
ACS Catal ; 10(19): 11510-11518, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33042610

RESUMO

Revealing the active nature of oxide-derived copper is of key importance to understand its remarkable catalytic performance during the cathodic CO2 reduction reaction (CO2RR) to produce valuable hydrocarbons. Using advanced spectroscopy, electron microscopy, and electrochemically active surface area characterization techniques, the electronic structure and the changes in the morphology/roughness of thermally oxidized copper thin films were revealed during CO2RR. For this purpose, we developed an in situ cell for X-ray spectroscopy that could be operated accurately in the presence of gases or liquids to clarify the role of the initial thermal oxide phase and its active phase during the electrocatalytic reduction of CO2. It was found that the Cu(I) species formed during the thermal treatment are readily reduced to Cu0 during the CO2RR, whereas Cu(II) species are hardly reduced. In addition, Cu(II) oxide electrode dissolution was found to yield a porous/void structure, where the lack of electrical connection between isolated islands prohibits the CO2RR. Therefore, the active/stable phase for CO2RR is metallic copper, independent of its initial phase, with a significant change in its morphology upon its reduction yielding the formation of a rougher surface with a higher number of underco-ordinated sites. Thus, the initial thermal oxidation of copper in air controls the reaction activity/selectivity because of the changes induced in the electrode surface morphology/roughness and the presence of more undercoordinated sites during the CO2RR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA