RESUMO
The aim of this consensus paper is to discuss the roles of the cerebellum in human gait, as well as its assessment and therapy. Cerebellar vermis is critical for postural control. The cerebellum ensures the mapping of sensory information into temporally relevant motor commands. Mental imagery of gait involves intrinsically connected fronto-parietal networks comprising the cerebellum. Muscular activities in cerebellar patients show impaired timing of discharges, affecting the patterning of the synergies subserving locomotion. Ataxia of stance/gait is amongst the first cerebellar deficits in cerebellar disorders such as degenerative ataxias and is a disabling symptom with a high risk of falls. Prolonged discharges and increased muscle coactivation may be related to compensatory mechanisms and enhanced body sway, respectively. Essential tremor is frequently associated with mild gait ataxia. There is growing evidence for an important role of the cerebellar cortex in the pathogenesis of essential tremor. In multiple sclerosis, balance and gait are affected due to cerebellar and spinal cord involvement, as a result of disseminated demyelination and neurodegeneration impairing proprioception. In orthostatic tremor, patients often show mild-to-moderate limb and gait ataxia. The tremor generator is likely located in the posterior fossa. Tandem gait is impaired in the early stages of cerebellar disorders and may be particularly useful in the evaluation of pre-ataxic stages of progressive ataxias. Impaired inter-joint coordination and enhanced variability of gait temporal and kinetic parameters can be grasped by wearable devices such as accelerometers. Kinect is a promising low cost technology to obtain reliable measurements and remote assessments of gait. Deep learning methods are being developed in order to help clinicians in the diagnosis and decision-making process. Locomotor adaptation is impaired in cerebellar patients. Coordinative training aims to improve the coordinative strategy and foot placements across strides, cerebellar patients benefiting from intense rehabilitation therapies. Robotic training is a promising approach to complement conventional rehabilitation and neuromodulation of the cerebellum. Wearable dynamic orthoses represent a potential aid to assist gait. The panel of experts agree that the understanding of the cerebellar contribution to gait control will lead to a better management of cerebellar ataxias in general and will likely contribute to use gait parameters as robust biomarkers of future clinical trials.
Assuntos
Ataxia Cerebelar , Doenças Cerebelares , Tremor Essencial , Humanos , Marcha Atáxica/etiologia , Tremor , Consenso , Ataxia Cerebelar/complicações , Ataxia/complicações , Doenças Cerebelares/complicações , Marcha/fisiologiaRESUMO
The study of visuomotor adaptation (VMA) capabilities has been encompassed in various experimental protocols aimed at investigating human motor control strategies and/or cognitive functions. VMA-oriented frameworks can have clinical applications, primarily in the investigation and assessment of neuromotor impairments caused by conditions such as Parkinson's disease or post-stroke, which affect the lives of tens of thousands of people worldwide. Therefore, they can enhance the understanding of the specific mechanisms of such neuromotor disorders, thus being a potential biomarker for recovery, with the aim of being integrated with conventional rehabilitative programs. Virtual Reality (VR) can be entailed in a framework targeting VMA since it allows the development of visual perturbations in a more customizable and realistic way. Moreover, as has been demonstrated in previous works, a serious game (SG) can further increase engagement thanks to the use of full-body embodied avatars. Most studies implementing VMA frameworks have focused on upper limb tasks and have utilized a cursor as visual feedback for the user. Hence, there is a paucity in the literature about VMA-oriented frameworks targeting locomotion tasks. In this article, the authors present the design, development, and testing of an SG-based framework that addresses VMA in a locomotion activity by controlling a full-body moving avatar in a custom VR environment. This workflow includes a set of metrics to quantitatively assess the participants' performance. Thirteen healthy children were recruited to evaluate the framework. Several quantitative comparisons and analyses were run to validate the different types of introduced visuomotor perturbations and to evaluate the ability of the proposed metrics to describe the difficulty caused by such perturbations. During the experimental sessions, it emerged that the system is safe, easy to use, and practical in a clinical setting. Despite the limited sample size, which represents the main limitation of the study and can be compensated for with future recruitment, the authors claim the potential of this framework as a useful instrument for quantitatively assessing either motor or cognitive impairments. The proposed feature-based approach gives several objective parameters as additional biomarkers that can integrate the conventional clinical scores. Future studies might investigate the relation between the proposed biomarkers and the clinical scores for specific disorders such as Parkinson's disease and cerebral palsy.
Assuntos
Doença de Parkinson , Acidente Vascular Cerebral , Realidade Virtual , Criança , Humanos , Doença de Parkinson/diagnóstico , Interface Usuário-Computador , LocomoçãoRESUMO
This study aimed to explore novel inertial measurement unit (IMU)-based strategies to estimate respiratory parameters in healthy adults lying on a bed while breathing normally. During the experimental sessions, the kinematics of the chest wall were contemporaneously collected through both a network of 9 IMUs and a set of 45 uniformly distributed reflective markers. All inertial kinematics were analyzed to identify a minimum set of signals and IMUs whose linear combination best matched the tidal volume measured by optoelectronic plethysmography. The resulting models were finally tuned and validated through a leave-one-out cross-validation approach to assess the extent to which they could accurately estimate a set of respiratory parameters related to three trunk compartments. The adopted methodological approach allowed us to identify two different models. The first, referred to as Model 1, relies on the 3D acceleration measured by three IMUs located on the abdominal compartment and on the lower costal margin. The second, referred to as Model 2, relies on only one component of the acceleration measured by two IMUs located on the abdominal compartment. Both models can accurately estimate the respiratory rate (relative error < 1.5%). Conversely, the duration of the respiratory phases and the tidal volume can be more accurately assessed by Model 2 (relative error < 5%) and Model 1 (relative error < 5%), respectively. We further discuss possible approaches to overcome limitations and improve the overall accuracy of the proposed approach.
Assuntos
Taxa Respiratória , Tronco , Aceleração , Adulto , Fenômenos Biomecânicos , Humanos , Sistema RespiratórioRESUMO
Walking patterns of persons affected by cerebellar ataxia (CA) are characterized by wide stride-to-stride variability ascribable to: the background pathology-related sensory-motor noise; the motor redundancy, i.e., an excess of elemental degrees of freedom that overcomes the number of variables underlying a specific task performance. In this study, we first tested the hypothesis that healthy and, especially, CA subjects can effectively exploit solutions in the domain of segmental angles to stabilize the position of either the foot or the pelvis (task performance) across heel strikes, in accordance with the uncontrolled manifold (UCM) theory. Next, we verified whether a specific perturbation-based training allows CA subjects to further take advantage of this coordination mechanism to better cope with their inherent pathology-related variability. Results always rejected the hypothesis of pelvis stabilization whereas supported the idea that the foot position is stabilized across heel strikes by a synergic covariation of elevation and azimuth angles of lower limb segments in CA subjects only. In addition, it was observed that the perturbation-based training involves a decreasing trend in the variance component orthogonal to the UCM in both groups, reflecting an improved accuracy of the foot control. Concluding, CA subjects can effectively structure the wide amount of pathology-related sensory-motor noise to stabilize specific task performance, such as the foot position across heel strikes. Moreover, the promising effects of the proposed perturbation-based training paradigm are expected to improve the coordinative strategy underlying the stabilization of the foot position across strides, thus ameliorating balance control during treadmill locomotion.
Assuntos
Ataxia Cerebelar , Perna (Membro) , Fenômenos Biomecânicos , Humanos , Extremidade Inferior , CaminhadaRESUMO
Post-stroke locomotion is usually characterized by asymmetrical gait patterns, compensatory movements of trunk and nonparetic limb, altered motor coordination, and wide inter-stride variability. This pilot study was designed to test a twofold hypothesis: post-stroke survivors can exploit the redundancy of the segmental angles to stabilize the 3D footpath trajectory during the swing phase, in accordance with the Uncontrolled Manifold (UCM) theory; an intense rehabilitative treatment improves both motor performance and outcomes of the UCM analysis. Ten stroke survivors underwent two evaluation sessions, before and after a conventional multidisciplinary intensive rehabilitation program, encompassing clinical tests and gait analysis, both overground and on treadmill. In addition, the UCM analysis was implemented to investigate whether variance of segmental angles is structured to minimize the inter-stride variability of the 3D footpath during the swing phase of treadmill locomotion. Both clinical and spatio-temporal parameters improved after the treatment, even if the statistical significance was reached for a limited set of them. The UCM analysis suggested that post-stroke survivors exploit the redundancy of lower limbs segmental angles mainly during the late swing, without significant differences between affected and unaffected sides. Thereafter, the main significant effects of the rehabilitative treatment consisted in strengthening the synergistic organization of the redundant segmental angles involving a more accurate control of the 3D footpath. Concluding, the UCM theory can be a promising tool to appraise the effects of a specific rehabilitative protocol on motor coordination in post-stroke survivors.
Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Fenômenos Biomecânicos , Marcha , Humanos , Extremidade Inferior , Projetos Piloto , Acidente Vascular Cerebral/complicações , Sobreviventes , CaminhadaRESUMO
BACKGROUND: Transfemoral amputees experience a complex host of physical, psychological, and social challenges, compounded by the functional limitations of current transfemoral prostheses. However, the specific relationships between human factors and prosthesis design and performance characteristics have not yet been adequately investigated. The present study aims to address this knowledge gap. METHODS: A comprehensive single-cohort survey of 114 unilateral transfemoral amputees addressed a broad range of demographic and clinical characteristics, functional autonomy, satisfaction and attitudes towards their current prostheses, and design priorities for an ideal transfemoral prosthesis, including the possibility of active assistance from a robotic knee unit. The survey was custom-developed based on several standard questionnaires used to assess motor abilities and autonomy in activities of daily living, prosthesis satisfaction, and quality of life in lower-limb amputees. Survey data were analyzed to compare the experience (including autonomy and satisfaction) and design priorities of users of transfemoral prostheses with versus without microprocessor-controlled knee units (MPKs and NMPKs, respectively), with a subsequent analyses of cross-category correlation, principal component analysis (PCA), cost-sensitivity segmentation, and unsupervised K-means clustering applied within the most cost-sensitive participants, to identify functional groupings of users with respect to their design priorities. RESULTS: The cohort featured predominantly younger (< 50 years) traumatic male amputees with respect to the general transfemoral amputee population, with pronounced differences in age distribution and amputation etiology (traumatic vs. non-traumatic) between MPK and NMPK groups. These differences were further reflected in user experience, with MPK users reporting significantly greater overall functional autonomy, satisfaction, and sense of prosthesis ownership than those with NMPKs, in conjunction with a decreased incidence of instability and falls. Across all participants, the leading functional priorities for an ideal transfemoral prosthesis were overall stability, adaptability to variable walking velocity, and lifestyle-related functionality, while the highest-prioritized general characteristics were reliability, comfort, and weight, with highly variable prioritization of cost according to reimbursement status. PCA and user clustering analyses revealed the possibility for functionally relevant groupings of prosthesis features and users, based on their differential prioritization of these features-with implications towards prosthesis design tradeoffs. CONCLUSIONS: This study's findings support the understanding that when appropriately prescribed according to patient characteristics and needs in the context of a proactive rehabilitation program, advanced transfemoral prostheses promote patient mobility, autonomy, and overall health. Survey data indicate overall stability, modularity, and versatility as key design priorities for the continued development of transfemoral prosthesis technology. Finally, observed associations between prosthesis type, user experience, and attitudes concerning prosthesis ownership suggest both that prosthesis characteristics influence device acceptance and functional outcomes, and that psychosocial factors should be specifically and proactively addressed during the rehabilitation process.
Assuntos
Amputados , Membros Artificiais , Procedimentos Cirúrgicos Robóticos , Atividades Cotidianas , Amputação Cirúrgica , Amputados/reabilitação , Humanos , Masculino , Desenho de Prótese , Qualidade de Vida , Reprodutibilidade dos Testes , Inquéritos e Questionários , Design Centrado no Usuário , CaminhadaRESUMO
The assessment of respiratory activity based on wearable devices is becoming an area of growing interest due to the wide range of available sensors. Accordingly, this scoping review aims to identify research evidence supporting the use of wearable devices to monitor the tidal volume during both daily activities and clinical settings. A screening of the literature (Pubmed, Scopus, and Web of Science) was carried out in December 2020 to collect studies: i. comparing one or more methodological approaches for the assessment of tidal volume with the outcome of a state-of-the-art measurement device (i.e., spirometry or optoelectronic plethysmography); ii. dealing with technological solutions designed to be exploited in wearable devices. From the initial 1031 documents, only 36 citations met the eligibility criteria. These studies highlighted that the tidal volume can be estimated by using different technologies ranging from IMUs to strain sensors (e.g., resistive, capacitive, inductive, electromagnetic, and optical) or acoustic sensors. Noticeably, the relative volumetric error of these solutions during quasi-static tasks (e.g., resting and sitting) is typically ≥10% but it deteriorates during dynamic motor tasks (e.g., walking). As such, additional efforts are required to improve the performance of these devices and to identify possible applications based on their accuracy and reliability.
Assuntos
Dispositivos Eletrônicos Vestíveis , Monitorização Fisiológica , Pletismografia , Reprodutibilidade dos Testes , Volume de Ventilação PulmonarRESUMO
BACKGROUND: Damage to the cerebellum can affect neural structures involved in locomotion, causing gait and balance disorders. However, the integrity of cerebellum does not seem to be critical in managing sudden and unexpected environmental changes such as disturbances during walking. The cerebellum also plays a functional role in motor learning. Only a few effective therapies exist for individuals with cerebellar ataxia. With these in mind, we aimed at investigating: (1) corrective response of participants with cerebellar ataxia (CA) to unexpected gait perturbations; and (2) the effectiveness of a perturbation-based training to improve their dynamic stability during balance recovery responses and steady walking. Specifically, we hypothesized that: (1) CA group can show a corrective behavior similar to that of a healthy control group; (2) the exposure to a perturbation-based treatment can exploit residual learning capability, thus improving their dynamic stability during balance recovery responses and steady locomotion. METHODS: Ten participants with cerebellar ataxia and eight age-matched healthy adults were exposed to a single perturbation-based training session. The Active Tethered Pelvic Assist Device applied unexpected waist-pull perturbations while participants walked on a treadmill. Spatio-temporal parameters and dynamic stability were determined during corrective responses and steady locomotion, before and after the training. The ANalysis Of VAriance was the main statistical test used to assess the effects of group (healthy vs CA) and training (baseline vs post) on spatio-temporal parameters of the gait and margin of stability. RESULTS: Data analysis revealed that individuals with cerebellar ataxia behaved differently from healthy volunteers: (1) they retained a wider base of support during corrective responses and steady gait both before and after the training; (2) due to the training, patients improved their anterior-posterior margin of stability during steady walking only. CONCLUSIONS: Our results revealed that participants with cerebellar ataxia could still rely on their learning capability to modify the gait towards a safer behavior. However, they could not take advantage from their residual learning capability while managing sudden and unexpected perturbations. Accordingly, the proposed training paradigm can be considered as a promising approach to improve balance control during steady walking in these individuals.
Assuntos
Ataxia Cerebelar/reabilitação , Atividade Motora/fisiologia , Equilíbrio Postural/fisiologia , Adulto , Ataxia Cerebelar/fisiopatologia , Cerebelo/fisiopatologia , Feminino , Humanos , Aprendizagem , Masculino , Pessoa de Meia-IdadeRESUMO
This study aimed to investigate the performance of an updated version of our pre-impact detection algorithm parsing out the output of a set of Inertial Measurement Units (IMUs) placed on lower limbs and designed to recognize signs of lack of balance due to tripping. Eight young subjects were asked to manage tripping events while walking on a treadmill. An adaptive threshold-based algorithm, relying on a pool of adaptive oscillators, was tuned to identify abrupt kinematics modifications during tripping. Inputs of the algorithm were the elevation angles of lower limb segments, as estimated by IMUs located on thighs, shanks and feet. The results showed that the proposed algorithm can identify a lack of balance in about 0.37 ± 0.11 s after the onset of the perturbation, with a low percentage of false alarms (<10%), by using only data related to the perturbed shank. The proposed algorithm can hence be considered a multi-purpose tool to identify different perturbations (i.e., slippage and tripping). In this respect, it can be implemented for different wearable applications (e.g., smart garments or wearable robots) and adopted during daily life activities to enable on-demand injury prevention systems prior to fall impacts.
Assuntos
Acidentes por Quedas/prevenção & controle , Técnicas Biossensoriais , Monitorização Fisiológica/métodos , Dispositivos Eletrônicos Vestíveis , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Fenômenos Biomecânicos , Feminino , Humanos , Extremidade Inferior/fisiologia , MasculinoRESUMO
Loss of stability is a precursor to falling and therefore represents a leading cause of injury, especially in fragile people. Thus, dynamic stability during activities of daily living (ADLs) needs to be considered to assess balance control and fall risk. The dynamic margin of stability (MOS) is often used as an indicator of how the body center of mass is located and moves relative to the base of support. In this work, we propose a magneto-inertial measurement unit (MIMU)-based method to assess the MOS of a gait. Six young healthy subjects were asked to walk on a treadmill at different velocities while wearing MIMUs on their lower limbs and pelvis. We then assessed the MOS by computing the lower body displacement with respect to the leading inverse kinematics approach. The results were compared with those obtained using a camera-based system in terms of root mean square deviation (RMSD) and correlation coefficient (ρ). We obtained a RMSD of ≤1.80 cm and ρ ≥ 0.85 for each walking velocity. The findings revealed that our method is comparable to camera-based systems in terms of accuracy, suggesting that it may represent a strategy to assess stability during ADLs in unstructured environments.
RESUMO
This study was aimed at verifying whether aging modifies intralimb coordination strategy during corrective responses elicited by unexpected slip-like perturbations delivered during steady walking on a treadmill. To this end, 10 young and 10 elderly subjects were asked to manage unexpected slippages of different intensities. We analyzed the planar covariation law of the lower limb segments, using the principal component analysis, to verify whether elevation angles of older subjects covaried along a plan before and after the perturbation. Results showed that segments related to the perturbed limbs of both younger and older people do not covary after all perturbations. Conversely, the planar covariation law of the unperturbed limb was systematically held for younger and older subjects. These results occurred despite differences in spatio-temporal and kinematic parameters being observed among groups and perturbation intensities. Overall, our analysis revealed that aging does not affect intralimb coordination during corrective responses induced by slip-like perturbation, suggesting that both younger and older subjects adopt this control strategy while managing sudden and unexpected postural transitions of increasing intensities. Accordingly, results corroborate the hypothesis that balance control emerges from a governing set of biomechanical invariants, that is, suitable control schemes (e.g., planar covariation law) shared across voluntary and corrective motor behaviors, and across different sensory contexts due to different perturbation intensities, in both younger and older subjects. In this respect, our findings provide further support to investigate the effects of specific task training programs to counteract the risk of fall.NEW & NOTEWORTHY This study was aimed at investigating how aging affects the intralimb coordination of lower limb segments, described by the planar covariation law, during unexpected slip-like perturbations of increasing intensity. Results revealed that neither the aging nor the perturbation intensity affects this coordination strategy. Accordingly, we proposed that the balance control emerges from an invariant set of control schemes shared across different sensory motor contexts and despite age-related neuromuscular adaptations.
Assuntos
Envelhecimento/fisiologia , Extremidade Inferior/fisiologia , Equilíbrio Postural , Caminhada , Adulto , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
This study aimed at testing the hypothesis that reactive biomechanical responses elicited by unexpected slipping-like perturbations delivered during steady walking are characterized by an intersegmental coordination strategy resembling that adopted during unperturbed walking. Fifteen healthy subjects were asked to manage multidirectional slipping-like perturbations delivered while they walked steadily. The planar covariation law of elevation angles related to lower limb segments was the main observed variable related to unperturbed and perturbed strides. Principal component analysis was used to verify whether elevation angles covaried, both before and after the onset of the perturbation, and, if so, the orientation of the related planes of covariation was compared. Results revealed that the planar covariation law of the unperturbed limb after onset of the perturbation was systematically similar to that seen during steady walking. This occurred despite differences in range of motion and intersubject variability of both elevation and joint angles. The analysis strongly corroborates the hypothesis that the planar covariation law emerges from the interaction between spinal neural networks and limb mechanical oscillators. In particular, fast and stereotyped reactive strategies may result from the interaction among activities of downstream neural networks encrypting well-trained motor schemes, such as those related to walking, limb dynamics, and sensory motor information gathered during the perturbation. In addition, our results allowed us to speculate that rehabilitative treatment based on unexpected perturbations and relying on the plasticity of the central nervous system may also be effective in eliciting unimpaired intralimb coordination in neurological patients.
Assuntos
Desempenho Psicomotor , Caminhada/fisiologia , Adulto , Extremidades/inervação , Extremidades/fisiologia , Retroalimentação Sensorial , Feminino , Humanos , Articulações/inervação , Articulações/fisiologia , Masculino , OrientaçãoRESUMO
BACKGROUND: Previous studies have shown that a cerebrovascular accident disrupts the coordinated control of leg muscles during locomotion inducing asymmetric gait patterns. However, the ability of muscle synergies and spinal maps to reflect the redistribution of the workload between legs after the trauma has not been investigated so far. METHODS: To investigate this issue, twelve post-stroke and ten healthy participants were asked to walk on a treadmill at controlled speeds (0.5, 0.7, 0.9, 1.1 km/h), while the EMG activity of twelve leg muscles was recorded on both legs. The synergies underlying muscle activation and the estimated motoneuronal activity in the lumbosacral enlargement (L2-S2) were computed and compared between groups. RESULTS: Results showed that muscle synergies in the unaffected limb were significantly more comparable to those of the healthy control group than the ones in the affected side. Spinal maps were dissimilar between the affected and unaffected sides highlighting a significant shift of the foci of the activity toward the upper levels of the spinal cord in the unaffected leg. CONCLUSIONS: Muscle synergies and spinal maps reflect the asymmetry as a motor deficit after stroke. However, further investigations are required to support or reject the hypothesis that the altered muscular organization highlighted by muscle synergies and spinal maps may be due to the concomitant contribution of the altered information coming from the upper part of the CNS, as resulting from the stroke, and to the abnormal sensory feedback due to the neuromuscular adaptation of the patients.
Assuntos
Lateralidade Funcional/fisiologia , Músculo Esquelético/fisiopatologia , Desempenho Psicomotor/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Adulto , Idoso , Ataxia/etiologia , Ataxia/fisiopatologia , Eletromiografia/métodos , Feminino , Humanos , Locomoção/fisiologia , Masculino , Pessoa de Meia-Idade , Neurônios Motores/fisiologia , Músculo Esquelético/inervação , Medula Espinal/fisiopatologia , Acidente Vascular Cerebral/complicaçõesRESUMO
BACKGROUND: Compensating for the effect of gravity by providing arm-weight support (WS) is a technique often utilized in the rehabilitation of patients with neurological conditions such as stroke to facilitate the performance of arm movements during therapy. Although it has been shown that, in healthy subjects as well as in stroke survivors, the use of arm WS during the performance of reaching movements leads to a general reduction, as expected, in the level of activation of upper limb muscles, the effects of different levels of WS on the characteristics of the kinematics of motion and of the activity of upper limb muscles have not been thoroughly investigated before. METHODS: In this study, we systematically assessed the characteristics of the kinematics of motion and of the activity of 14 upper limb muscles in a group of 9 healthy subjects who performed 3-D arm reaching movements while provided with different levels of arm WS. We studied the hand trajectory and the trunk, shoulder, and elbow joint angular displacement trajectories for different levels of arm WS. Besides, we analyzed the amplitude of the surface electromyographic (EMG) data collected from upper limb muscles and investigated patterns of coordination via the analysis of muscle synergies. RESULTS: The characteristics of the kinematics of motion varied across WS conditions but did not show distinct trends with the level of arm WS. The level of activation of upper limb muscles generally decreased, as expected, with the increase in arm WS. The same eight muscle synergies were identified in all WS conditions. Their level of activation depended on the provided level of arm WS. CONCLUSIONS: The analysis of muscle synergies allowed us to identify a modular organization underlying the generation of arm reaching movements that appears to be invariant to the level of arm WS. The results of this study provide a normative dataset for the assessment of the effects of the level of arm WS on muscle synergies in stroke survivors and other patients who could benefit from upper limb rehabilitation with arm WS.
Assuntos
Braço/fisiologia , Movimento/fisiologia , Músculo Esquelético/fisiologia , Aparelhos Ortopédicos , Adulto , Fenômenos Biomecânicos , Eletromiografia , Feminino , Humanos , Masculino , Modalidades de Fisioterapia/instrumentação , Amplitude de Movimento Articular/fisiologiaRESUMO
BACKGROUND: Comparison between healthy and hemiparetic gait is usually carried out while subjects walk overground at preferred speed. This generates bias due to the lack of uniformity across selected speeds because they reflect the great variability of the functional level of post-stroke patients. This study aimed at examining coordinative adaptations during walking in response to unilateral brain damage, while homologous participants walked at two fixed speeds. METHODS: Five patients with left and five with right chronic hemiparesis, characterized by similar level of motor functioning, were enrolled. Ten non-disabled volunteers were recruited as matched control group. Spatio-temporal parameters, and intralimb thigh-leg and leg-foot coordination patterns were used to compare groups while walking on a treadmill at 0.4 and 0.6 m/s. The likelihood of Continuous Relative Phase patterns between healthy and hemiparetic subjects was evaluated by means of the root mean square of the difference and the cross correlation coefficient. The effects of the group (i.e., healthy vs. hemiparetics), side (i.e., affected vs.unaffected), and speed (e.g., slow vs. fast) were analyzed on all metrics using the Analysis of Variance. RESULTS: Spatio-temporal parameters of all hemiparetic subjects did not significantly differ from those of healthy subjects nor showed any asymmetry between affected and unaffected limbs. Conversely, both thigh-leg and foot-leg coordination patterns appeared to account for pathology related modifications. CONCLUSION: Comparisons between hemiparetic and healthy gait should be carried out when all participants are asked to seek the same suitable dynamic equilibrium led by the same external (i.e., the speed) and internal (i.e., severity of the pathology) conditions. In this respect, biomechanical adaptations reflecting the pathology can be better highlighted by coordinative patterns of coupled segments within each limb than by the spatio-temporal parameters. Accordingly, a deep analysis of the intralimb coordination may be helpful for clinicians while designing therapeutic treatments.
Assuntos
Adaptação Fisiológica/fisiologia , Teste de Esforço/métodos , Paresia/fisiopatologia , Desempenho Psicomotor/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Fenômenos Biomecânicos , Feminino , Marcha/fisiologia , Humanos , Perna (Membro)/fisiopatologia , Masculino , Pessoa de Meia-Idade , Paresia/etiologia , Acidente Vascular Cerebral/complicações , Caminhada/fisiologiaRESUMO
BACKGROUND: After a stroke, patients show significant modifications of neural control of movement, such as abnormal muscle co-activation, and reduced selectivity and modulation of muscle activity. Nonetheless, results reported in literature do not allow to unequivocally explain whether and, in case, how a cerebrovascular accident affects muscle synergies underlying the control of the upper limb. These discrepancies suggest that a complete understanding of the modular re-organization of muscle activity due to a stroke is still lacking. This pilot study aimed at investigating the effects of the conjunction between the natural ongoing of the pathology and the intense robot-mediated treatment on muscle synergies of the paretic upper limb of subacute post-stroke patients. METHODS: Six subacute patients, homogenous with respect to the age and the time elapsed from the trauma, and ten healthy age-matched subjects were enrolled. The protocol consisted in achieving planar movement of the upper limb while handling the end-effector of a robotic platform. Patients underwent 6 weeks long treatment while clinical scores, kinematics of the end-effector and muscle activity were recorded. Then we verified whether muscle coordination underlying the motor task was significantly affected by the cerebrovascular accident and how muscle synergies were modified along the treatment. RESULTS: Results show that although muscle synergies in subacute stroke patients were qualitatively comparable to those of healthy subjects, those underlying the movement of the shoulder can reflect the functional deficit induced by the pathology. Moreover, the improvement of motor performance due to the treatment was achieved in conjunction with slight modifications of muscle synergies. In this regard, modifications of muscle synergies appeared to be influenced by the different recovering mechanisms across patients presumably due to the heterogeneity of lesions, sides and location of the accident. CONCLUSIONS: The results support the hypothesis that muscle synergies reflect the injury of the cerebrovascular accident and could document the effects of the functional recovery due to a suitable and customized treatment. Therefore, they open up new possibilities for the development of more effective neuro-rehabilitation protocols.
Assuntos
Músculo Esquelético/fisiopatologia , Desempenho Psicomotor/fisiologia , Recuperação de Função Fisiológica/fisiologia , Robótica/métodos , Reabilitação do Acidente Vascular Cerebral , Idoso , Idoso de 80 Anos ou mais , Braço , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Projetos Piloto , Acidente Vascular Cerebral/fisiopatologiaRESUMO
BACKGROUND: Studying the responses in human behaviour to external perturbations during daily motor tasks is of key importance for understanding mechanisms of balance control and for investigating the functional response of targeted subjects. Experimental platforms as far developed entail a low number of perturbations and, only in few cases, have been designed to measure variables used at run time to trigger events during a certain motor task. METHODS: This work introduces a new mechatronic device, named SENLY, that provides balance perturbations while subjects carry out daily motor tasks (e.g., walking, upright stance). SENLY mainly consists of two independently-controlled treadmills that destabilize balance by suddenly perturbing belts movements in the horizontal plane. It is also provided with force sensors, which can be used at run time to estimate the ground reaction forces and identify events along the gait cycle in order to trigger the platform perturbation. The paper also describes the customized procedures adopted to calibrate the platform and the first testing trials aimed at evaluating its performance. RESULTS: SENLY allows to measure both vertical ground reaction forces and their related location more precisely and more accurately than other platforms of the same size. Moreover, the platform kinematic and kinetic performance meets all required specifications, with a negligible influence of the instrumental noise. CONCLUSION: A new perturbing platform able to reproduce different slipping paradigms while measuring GRFs at run time in order to enable the asynchronous triggering during the gait cycle was designed and developed. Calibration procedures and pilot tests show that SENLY allows to suitably estimate dynamical features of the load and to standardize experimental sessions, improving the efficacy of functional analysis.
Assuntos
Acidentes por Quedas/prevenção & controle , Equilíbrio Postural/fisiologia , Algoritmos , Fenômenos Biomecânicos , Calibragem , Eletrônica , Desenho de Equipamento , Pé/anatomia & histologia , Pé/fisiologia , Humanos , Microcomputadores , Movimento (Física) , Ruído , Postura/fisiologia , Interface Usuário-Computador , Caminhada/fisiologiaRESUMO
This paper presents a multivariate dataset of 2866 food flipping movements, performed by 4 chefs and 5 home cooks, with different grilled food and two utensils (spatula and tweezers). The 3D trajectories of strategic points in the utensils were tracked using optoelectronic motion capture. The pinching force of the tweezers, the bending force and torsion torque of the spatula were also recorded, as well as videos and the subject gaze. These data were collected using a custom experimental setup that allowed the execution of flipping movements with freshly cooked food, without having the sensors near the dangerous cooking area. Complementary, the 2D position of food was computed from the videos. The action of flipping food is, indeed, gaining the attention of both researchers and manufacturers of foodservice technology. The reported dataset contains valuable measurements (1) to characterize and model flipping movements as performed by humans, (2) to develop bio-inspired methods to control a cooking robot, or (3) to study new algorithms for human actions recognition.