Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Pathog ; 11(1): e1004627, 2015 01.
Artigo em Inglês | MEDLINE | ID: mdl-25633080

RESUMO

Klebsiella pneumoniae is a significant human pathogen, in part due to high rates of multidrug resistance. RamA is an intrinsic regulator in K. pneumoniae established to be important for the bacterial response to antimicrobial challenge; however, little is known about its possible wider regulatory role in this organism during infection. In this work, we demonstrate that RamA is a global transcriptional regulator that significantly perturbs the transcriptional landscape of K. pneumoniae, resulting in altered microbe-drug or microbe-host response. This is largely due to the direct regulation of 68 genes associated with a myriad of cellular functions. Importantly, RamA directly binds and activates the lpxC, lpxL-2 and lpxO genes associated with lipid A biosynthesis, thus resulting in modifications within the lipid A moiety of the lipopolysaccharide. RamA-mediated alterations decrease susceptibility to colistin E, polymyxin B and human cationic antimicrobial peptide LL-37. Increased RamA levels reduce K. pneumoniae adhesion and uptake into macrophages, which is supported by in vivo infection studies, that demonstrate increased systemic dissemination of ramA overexpressing K. pneumoniae. These data establish that RamA-mediated regulation directly perturbs microbial surface properties, including lipid A biosynthesis, which facilitate evasion from the innate host response. This highlights RamA as a global regulator that confers pathoadaptive phenotypes with implications for our understanding of the pathogenesis of Enterobacter, Salmonella and Citrobacter spp. that express orthologous RamA proteins.


Assuntos
Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Interações Hospedeiro-Patógeno/genética , Klebsiella pneumoniae/genética , Lipopolissacarídeos/metabolismo , Animais , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Sequência de Bases , Células Cultivadas , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Infecções por Klebsiella/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Polimixinas/farmacologia , Regulon
2.
Am J Respir Crit Care Med ; 193(4): 407-16, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26488187

RESUMO

RATIONALE: IL-17A is purported to help drive early pathogenesis in acute respiratory distress syndrome (ARDS) by enhancing neutrophil recruitment. Although IL-17A is the archetypal cytokine of T-helper 17 cells, it is produced by a number of lymphocytes, the source during ARDS being unknown. OBJECTIVES: To identify the cellular source and the role of IL-17A in the early phase of lung injury. METHODS: Lung injury was induced in wild-type (C57BL/6) and IL-17 knockout (KO) mice with aerosolized LPS (100 µg) or Pseudomonas aeruginosa infection. Detailed phenotyping of the cells expressing RORγt, the transcriptional regulator of IL-17 production, in the mouse lung at 24 hours was performed by flow cytometry. MEASUREMENTS AND MAIN RESULTS: A 100-fold reduction in neutrophil infiltration was observed in the lungs of the IL-17A KO compared with wild-type mice. The majority of RORγt(+) cells in the mouse lung were the recently identified group 3 innate lymphoid cells (ILC3s). Detailed characterization revealed these pulmonary ILC3s (pILC3s) to be discrete from those described in the gut. The critical role of these cells was verified by inducing injury in recombinase-activating gene 2 KO mice, which lack T cells but retain innate lymphoid cells. No amelioration of pathology was observed in the recombinase-activating gene 2 KO mice. CONCLUSIONS: IL-17 is rapidly produced during lung injury and significantly contributes to early immunopathogenesis. This is orchestrated largely by a distinct population of pILC3s. Modulation of the activity of pILC3s may potentiate early control of the inflammatory dysregulation seen in ARDS, opening up new therapeutic targets.


Assuntos
Interleucina-17/biossíntese , Linfócitos/patologia , Síndrome do Desconforto Respiratório/patologia , Animais , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Pulmão/patologia , Linfócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos , Síndrome do Desconforto Respiratório/metabolismo
3.
Pathogens ; 12(8)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37624013

RESUMO

Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen and the leading cause of infection in patients with cystic fibrosis (CF). The ability of P. aeruginosa to evade host responses and develop into chronic infection causes significant morbidity and mortality. Several mouse models have been developed to study chronic respiratory infections induced by P. aeruginosa, with the bead agar model being the most widely used. However, this model has several limitations, including the requirement for surgical procedures and high mortality rates. Herein, we describe novel and adapted biologically relevant models of chronic lung infection caused by P. aeruginosa. Three methods are described: a clinical isolate infection model, utilising isolates obtained from patients with CF; an incomplete antibiotic clearance model, leading to bacterial bounce-back; and the establishment of chronic infection; and an adapted water bottle chronic infection model. These models circumvent the requirement for a surgical procedure and, importantly, can be induced with clinical isolates of P. aeruginosa and in wild-type mice. We also demonstrate successful induction of chronic infection in the transgenic ßENaC murine model of CF. We envisage that the models described will facilitate the investigations of host and microbial factors, and the efficacy of novel antimicrobials, during chronic P. aeruginosa respiratory infections.

4.
Infect Immun ; 76(11): 4952-8, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18765721

RESUMO

Leptospirosis is a global zoonotic disease. The causative agent, pathogenic Leptospira species, survives in the renal tubules of chronically infected hosts, from where leptospires are shed via urine into the environment. Infection of new hosts can present as an array of acute and chronic disease processes reflecting variations in host-pathogen interactions. The present study was designed to reproduce the carrier phase of infection in Rattus norvegicus, thus facilitating shedding of leptospires in urine. Leptospires shed in urine were collected for proteomic analysis because these organisms reflect a naturally virulent form of Leptospira associated with infection of new hosts. Experimentally infected rats remained clinically asymptomatic but shed leptospires in urine for several months at concentrations of up to 10(7) leptospires/ml of urine. Proteomic analysis of rat urine-isolated leptospires compared to in vitro-cultivated leptospires confirmed differential protein and antigen expression, as demonstrated by two-dimensional gel electrophoresis and immunoblotting. Furthermore, while serum from chronically infected rats reacted with many antigens of in vitro-cultivated Leptospira, few antigens of rat urine-isolated Leptospira were reactive. Results confirm that differential protein expression by Leptospira during chronic infection facilitates its persistence in the presence of a specific host antibody response.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/análise , Leptospira interrogans/imunologia , Leptospira interrogans/fisiologia , Leptospirose/imunologia , Leptospirose/urina , Animais , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/urina , Proteínas de Bactérias/imunologia , Doença Crônica , Eletroforese em Gel Bidimensional , Humanos , Immunoblotting , Imuno-Histoquímica , Leptospirose/patologia , Masculino , Proteômica , Ratos , Ratos Wistar
5.
PLoS One ; 9(12): e115959, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25541972

RESUMO

Bacterial pathogens are known for their wide range of strategies to specifically adapt to host environments and infection sites. An in-depth understanding of these adaptation mechanisms is crucial for the development of effective therapeutics and new prevention measures. In this study, we assessed the suitability of Fourier Transform Infrared (FTIR) spectroscopy for monitoring metabolic adaptations of the bacterial pathogen Listeria monocytogenes to specific host genotypes and for exploring the potential of FTIR spectroscopy to gain novel insights into the host-pathogen interaction. Three different mouse genotypes, showing different susceptibility to L. monocytogenes infections, were challenged with L. monocytogenes and re-isolated bacteria were subjected to FTIR spectroscopy. The bacteria from mice with different survival characteristics showed distinct IR spectral patterns, reflecting specific changes in the backbone conformation and the hydrogen-bonding pattern of the protein secondary structure in the bacterial cell. Coupling FTIR spectroscopy with chemometrics allowed us to link bacterial metabolic fingerprints with host infection susceptibility and to decipher longtime memory effects of the host on the bacteria. After prolonged cultivation of host-passaged bacteria under standard laboratory conditions, the host's imprint on bacterial metabolism vanished, which suggests a revertible metabolic adaptation of bacteria to host environment and loss of host environment triggered memory effects over time. In summary, our work demonstrates the potential and power of FTIR spectroscopy to be used as a fast, simple and highly discriminatory tool to investigate the mechanism of bacterial host adaptation on a macromolar and metabolic level.


Assuntos
Interações Hospedeiro-Patógeno , Listeria monocytogenes/química , Listeria monocytogenes/fisiologia , Listeriose/genética , Listeriose/microbiologia , Espectroscopia de Infravermelho com Transformada de Fourier , Animais , Feminino , Microbiologia de Alimentos , Genótipo , Listeriose/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
6.
PLoS One ; 6(10): e26046, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22043303

RESUMO

Rattus norvegicus is a natural reservoir host for pathogenic species of Leptospira. Experimentally infected rats remain clinically normal, yet persistently excrete large numbers of leptospires from colonized renal tubules via urine, despite a specific host immune response. Whilst persistent renal colonization and shedding is facilitated in part by differential antigen expression by leptospires to evade host immune responses, there is limited understanding of kidney and urinary proteins expressed by the host that facilitates such biological equilibrium. Urine pellets were collected from experimentally infected rats shedding leptospires and compared to urine from non-infected controls spiked with in vitro cultivated leptospires for analysis by 2-D DIGE. Differentially expressed host proteins include membrane metallo endopeptidase, napsin A aspartic peptidase, vacuolar H+ATPase, kidney aminopeptidase and immunoglobulin G and A. Loa22, a virulence factor of Leptospira, as well as the GroEL, were increased in leptospires excreted in urine compared to in vitro cultivated leptospires. Urinary IgG from infected rats was specific for leptospires. Results confirm differential protein expression by both host and pathogen during chronic disease and include markers of kidney function and immunoglobulin which are potential biomarkers of infection.


Assuntos
Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Leptospirose/urina , Proteínas/análise , Proteômica/métodos , Animais , Imunoglobulina G , Nefropatias , Leptospira/química , Leptospira/metabolismo , Proteínas/genética , Ratos
7.
PLoS One ; 6(3): e18279, 2011 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-21483834

RESUMO

BACKGROUND: Leptospirosis is caused by pathogenic spirochetes of the genus Leptospira. The bacteria enter the human body via abraded skin or mucous membranes and may disseminate throughout. In general the clinical picture is mild but some patients develop rapidly progressive, severe disease with a high case fatality rate. Not much is known about the innate immune response to leptospires during haematogenous dissemination. Previous work showed that a human THP-1 cell line recognized heat-killed leptospires and leptospiral LPS through TLR2 instead of TLR4. The LPS of virulent leptospires displayed a lower potency to trigger TNF production by THP-1 cells compared to LPS of non-virulent leptospires. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the host response and killing of virulent and non-virulent Leptospira of different serovars by human THP-1 cells, human PBMC's and human whole blood. Virulence of each leptospiral strain was tested in a well accepted standard guinea pig model. Virulent leptospires displayed complement resistance in human serum and whole blood while in-vitro attenuated non-virulent leptospires were rapidly killed in a complement dependent manner. In vitro stimulation of THP-1 and PBMC's with heat-killed and living leptospires showed differential serovar and cell type dependence of cytokine induction. However, at low, physiological, leptospiral dose, living virulent complement resistant strains were consistently more potent in whole blood stimulations than the corresponding non-virulent complement sensitive strains. At higher dose living virulent and non-virulent leptospires were equipotent in whole blood. Inhibition of different TLRs indicated that both TLR2 and TLR4 as well as TLR5 play a role in the whole blood cytokine response to living leptospires. CONCLUSIONS/SIGNIFICANCE: Thus, in a minimally altered system as human whole blood, highly virulent Leptospira are potent inducers of the cytokine response.


Assuntos
Imunidade Inata/imunologia , Leptospira/imunologia , Leptospira/patogenicidade , Animais , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Cobaias , Humanos , Interleucina-6/metabolismo , Leucócitos Mononucleares/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA