Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Structure ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39208793

RESUMO

N-myristoyltransferases (NMTs) catalyze essential acylations of N-terminal alpha or epsilon amino groups of glycines or lysines. Here, we reveal that peptides tightly fitting the optimal glycine recognition pattern of human NMTs are potent prodrugs relying on a single-turnover mechanism. Sequence scanning of the inhibitory potency of the series closely reflects NMT glycine substrate specificity rules, with the lead inhibitor blocking myristoylation by NMTs of various species. We further redesigned the series based on the recently recognized lysine-myristoylation mechanism by taking advantage of (1) the optimal peptide chassis and (2) lysine side chain mimicry with unnatural enantiomers. Unlike the lead series, the inhibitory properties of the new compounds rely on the protonated state of the side chain amine, which stabilizes a salt bridge with the catalytic base at the active site. Our study provides the basis for designing first-in-class NMT inhibitors tailored for infectious diseases and alternative active site targeting.

2.
Methods Enzymol ; 684: 167-190, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37230588

RESUMO

N-myristoyltransferases (NMTs) are members of the large family of GCN5-related N-acetyltransferases (GNATs). NMTs mainly catalyze eukaryotic protein myristoylation, an essential modification tagging protein N-termini and allowing successive subcellular membrane targeting. NMTs use myristoyl-CoA (C14:0) as major acyl donor. NMTs were recently found to react with unexpected substrates including lysine side-chains and acetyl-CoA. This chapter details the kinetic approaches that have allowed the characterization of the unique catalytic features of NMTs in vitro.


Assuntos
Aciltransferases , Sequência de Aminoácidos , Aciltransferases/química
3.
Methods Enzymol ; 684: 135-166, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37230587

RESUMO

N-terminal myristoylation is an essential eukaryotic modification crucial for cellular homeostasis in the context of many physiological processes. Myristoylation is a lipid modification resulting in a C14 saturated fatty acid addition. This modification is challenging to capture due to its hydrophobicity, low abundance of target substrates, and the recent discovery of unexpected NMT reactivity including myristoylation of lysine side chains and N-acetylation in addition to classical N-terminal Gly-myristoylation. This chapter details the high-end approaches developed to characterize the different features of N-myristoylation and its targets through in vitro and in vivo labeling.


Assuntos
Aciltransferases , Ácidos Graxos , Aciltransferases/metabolismo , Ácido Mirístico/metabolismo , Lisina
4.
J Mol Biol ; 434(22): 167843, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36181773

RESUMO

N-myristoyltransferases (NMTs) catalyze protein myristoylation, a lipid modification crucial for cell survival and a range of pathophysiological processes. Originally thought to modify only N-terminal glycine α-amino groups (G-myristoylation), NMTs were recently shown to also modify lysine ε-amino groups (K-myristoylation). However, the clues ruling NMT-dependent K-myristoylation and the full range of targets are currently unknown. Here we combine mass spectrometry, kinetic studies, in silico analysis, and crystallography to identify the specific features driving each modification. We show that direct interactions between the substrate's reactive amino group and the NMT catalytic base promote K-myristoylation but with poor efficiency compared to G-myristoylation, which instead uses a water-mediated interaction. We provide evidence of depletion of proteins with NMT-dependent K-myristoylation motifs in humans, suggesting evolutionary pressure to prevent this modification in favor of G-myristoylation. In turn, we reveal that K-myristoylation may only result from post-translational events. Our studies finally unravel the respective paths towards K-myristoylation or G-myristoylation, which rely on a very subtle tradeoff embracing the chemical landscape around the reactive group.


Assuntos
Aciltransferases , Glicina , Lisina , Ácido Mirístico , Processamento de Proteína Pós-Traducional , Humanos , Aciltransferases/química , Catálise , Glicina/química , Cinética , Lisina/química , Ácido Mirístico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA