Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
J Cardiovasc Pharmacol ; 79(2): 229-234, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35485584

RESUMO

ABSTRACT: Imidazoline receptor antisera selected/Nischarin was proposed several years ago as the functional entity for the I1 medullary receptors (I1Rs) targeted, together with α2-adrenoceptors, by the centrally acting antihypertensive drugs, such as clonidine. The objective of this study was to test this assumption using a pyrroline analog of clonidine, LNP599, which, unlike clonidine and related compounds, displays high selectivity toward I1Rs. Cardiovascular effects of LNP599 (3 mg/kg intravenous) were evaluated in anesthetized, artificially ventilated nischarin mutant rats expressing a truncated form of nischarin lacking the putative imidazoline binding site. LNP599 induced a rapid and pronounced fall in arterial blood pressure in wild-type animals (-42.7% ± 11.0% after 15 minutes), associated with a ≈30% heart rate reduction. Similar effects were obtained in homozygous and heterozygous nischarin mutant rats. The observation that the hypotensive response to I1R activation is not affected by the absence of the putative imidazoline binding site on nischarin strongly suggests that nischarin cannot be regarded as the functional I1R. Carbohydrate regulation was improved in nischarin mutant rats, further supporting the conclusion that nischarin and I1R are 2 distinct molecular entities.


Assuntos
Anti-Hipertensivos , Clonidina , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Anti-Hipertensivos/farmacologia , Pressão Sanguínea , Clonidina/farmacologia , Receptores de Imidazolinas , Ratos
2.
Hum Mol Genet ; 28(8): 1274-1285, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30544254

RESUMO

Friedreich ataxia (FA) is currently an incurable inherited mitochondrial neurodegenerative disease caused by reduced levels of frataxin. Cardiac failure constitutes the main cause of premature death in FA. While adeno-associated virus-mediated cardiac gene therapy was shown to fully reverse the cardiac and mitochondrial phenotype in mouse models, this was achieved at high dose of vector resulting in the transduction of almost all cardiomyocytes, a dose and biodistribution that is unlikely to be replicated in clinic. The purpose of this study was to define the minimum vector biodistribution corresponding to the therapeutic threshold, at different stages of the disease progression. Correlative analysis of vector cardiac biodistribution, survival, cardiac function and biochemical hallmarks of the disease revealed that full rescue of the cardiac function was achieved when only half of the cardiomyocytes were transduced. In addition, meaningful therapeutic effect was achieved with as little as 30% transduction coverage. This therapeutic effect was mediated through cell-autonomous mechanisms for mitochondria homeostasis, although a significant increase in survival of uncorrected neighboring cells was observed. Overall, this study identifies the biodistribution thresholds and the underlying mechanisms conditioning the success of cardiac gene therapy in Friedreich ataxia and provides guidelines for the development of the clinical administration paradigm.


Assuntos
Cardiomiopatias/metabolismo , Ataxia de Friedreich/fisiopatologia , Miócitos Cardíacos/fisiologia , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Ataxia de Friedreich/terapia , Terapia Genética/métodos , Humanos , Proteínas de Ligação ao Ferro/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias/fisiologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Distribuição Tecidual , Frataxina
3.
Int J Obes (Lond) ; 45(6): 1229-1239, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33654274

RESUMO

BACKGROUND/OBJECTIVES: Overweight and obesity are undoubtable risk factors for type 2 diabetes and cardiovascular diseases and significantly contribute to the global morbi-mortality. We previoulsy reported that LNP599, a pharmacological imidazoline-like activator of hepatic AMPK/adiponectin signaling, protects against the development of adiposity and obesity and the associated cardio-metabolic disorders, suggesting that it may be a suitable drug candidate for a therapeutic approach targeting the development of obesity at very early stages. The objective of the present study was to evaluate the metabolic effects of LNP599 in a model of diet-induced overweight and metabolic disorders in a nonhuman primate, the common marmoset (Callithrix jacchus), and more particularly to establish the impact of the compound on cholesterol homeostasis, i.e., HDL and LDL/VLDL lipoproteins. METHODS: Marmosets were fed normal (NC) or hypercaloric (HC) chow during 16 weeks. Diet-induced changes in body weight and metabolism were assessed. Effects of LNP599 were evaluated in a subset of HC animals (HC-LNP) receiving the compound at a daily dose of 10 mg/kg over the 16 weeks. RESULTS: HC-feeding induced significant overweight associated with a marked dyslipidemia (hypertriglyceridemia, hypercholesterolemia, and reduced HDL over LDL/VLDL cholesterol ratio). LNP599 blunted the diet-induced body weight gain and largely protected against the development of hypertriglyceridemia. Total cholesterol was unchanged but the ratio of HDL over LDL/VLDL cholesterol was more than doubled. CONCLUSIONS: The profile of metabolic troubles obtained upon enriched diet mimicked the disorders associated with spontaneous obesity in marmosets. HC marmosets represent an experimental model of high clinical relevance to study the pathophysiology of obesity and related dyslipidemia and to evaluate the effects of emerging therapies targeting these disorders. Our data confirm the preventing effects of LNP599 in a nonhuman primate model and demonstrate for the first time the high potency of this drug in promoting HDL-cholesterol.


Assuntos
Compostos de Anilina/farmacologia , Peso Corporal/efeitos dos fármacos , Doenças Metabólicas , Obesidade , Substâncias Protetoras/farmacologia , Pirróis/farmacologia , Animais , Callithrix , Modelos Animais de Doenças , Imidazolinas , Masculino , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Obesidade/complicações , Obesidade/metabolismo
4.
Int J Obes (Lond) ; 43(11): 2163-2175, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30926950

RESUMO

BACKGROUND/OBJECTIVES: We previously observed that selective agonists of the sympatho-inhibitory I1 imidazoline receptors (LNP ligands) have favorable effects on several cardiovascular and metabolic disorders defining the metabolic syndrome, including body weight. The objectives of this study were to explore the effects of LNPs on adiposity and the mechanisms involved, and to evaluate their impact on metabolic homeostasis. METHODS: Young Zucker fa/fa rats were treated with LNP599 (10 mg/kg/day) for 12 weeks. Effects on body weight, adiposity (regional re-distribution, morphology, and function of adipose tissues), cardiovascular and metabolic homeostasis, and liver function were evaluated. Direct effects on insulin and AMP-activated protein kinase (AMPK) signaling were studied in human hepatoma HepG2 cells. RESULTS: LNP599 treatment limited the age-dependent remodeling and inflammation of subcutaneous, epididymal, and visceral adipose tissues, and prevented total fat deposits and the development of obesity. Body-weight stabilization was not related to reduced food intake but rather to enhanced energy expenditure and thermogenesis. Cardiovascular and metabolic parameters were also improved and were significantly correlated with body weight but not with plasma norepinephrine. Insulin and AMPK signaling were enhanced in hepatic tissues of treated animals, whereas blood markers of hepatic disease and pro-inflammatory cytokine levels were reduced. In cultured HepG2 cells, LNP ligands phosphorylated AMPK and the downstream acetyl-CoA carboxylase and prevented oleic acid-induced intracellular lipid accumulation. They also significantly potentiated insulin-mediated AKT activation and this was independent from AMPK. CONCLUSIONS: Selective I1 imidazoline receptor agonists protect against the development of adiposity and obesity, and the associated cardio-metabolic disorders. Activation of I1 receptors in the liver, leading to stimulation of the cellular energy sensor AMPK and insulin sensitization, and in adipose tissues, leading to improvement of morphology and function, are identified as peripheral mechanisms involved in the beneficial actions of these ligands.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Imidazolinas/farmacologia , Fígado/efeitos dos fármacos , Doenças Metabólicas/prevenção & controle , Obesidade/prevenção & controle , Compostos de Anilina , Animais , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Células Hep G2 , Humanos , Masculino , Pirróis , Ratos , Ratos Zucker
5.
FASEB J ; 32(11): 6159-6173, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29879376

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels encode neuronal and cardiac pacemaker currents. The composition of pacemaker channel complexes in different tissues is poorly understood, and the presence of additional HCN modulating subunits was speculated. Here we show that vesicle-associated membrane protein-associated protein B (VAPB), previously associated with a familial form of amyotrophic lateral sclerosis 8, is an essential HCN1 and HCN2 modulator. VAPB significantly increases HCN2 currents and surface expression and has a major influence on the dendritic neuronal distribution of HCN2. Severe cardiac bradycardias in VAPB-deficient zebrafish and VAPB-/- mice highlight that VAPB physiologically serves to increase cardiac pacemaker currents. An altered T-wave morphology observed in the ECGs of VAPB-/- mice supports the recently proposed role of HCN channels for ventricular repolarization. The critical function of VAPB in native pacemaker channel complexes will be relevant for our understanding of cardiac arrhythmias and epilepsies, and provides an unexpected link between these diseases and amyotrophic lateral sclerosis.-Silbernagel, N., Walecki, M., Schäfer, M.-K. H., Kessler, M., Zobeiri, M., Rinné, S., Kiper, A. K., Komadowski, M. A., Vowinkel, K. S., Wemhöner, K., Fortmüller, L., Schewe, M., Dolga, A. M., Scekic-Zahirovic, J., Matschke, L. A., Culmsee, C., Baukrowitz, T., Monassier, L., Ullrich, N. D., Dupuis, L., Just, S., Budde, T., Fabritz, L., Decher, N. The VAMP-associated protein VAPB is required for cardiac and neuronal pacemaker channel function.


Assuntos
Coração/fisiologia , Ativação do Canal Iônico , Proteínas de Membrana/fisiologia , Neurônios/fisiologia , Marca-Passo Artificial , Animais , Proteínas de Transporte/fisiologia , Embrião não Mamífero/citologia , Embrião não Mamífero/fisiologia , Feminino , Células HeLa , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Camundongos , Camundongos Knockout , Neurônios/citologia , Ratos , Ratos Sprague-Dawley , Proteínas de Transporte Vesicular , Xenopus laevis , Peixe-Zebra
6.
Pharmacol Res ; 140: 33-42, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30208338

RESUMO

Heart valve disease (HVD) is a complex entity made by different pathological processes that ultimately lead to the abnormal structure and disorganization of extracellular matrix proteins resulting to dysfunction of the leaflets. At its final evolutionary step, treatments are limited to the percutaneous or surgical valve replacement, whatever the original cause of the degeneration. Understanding early molecular mechanisms that regulate valve interstitial cells remodeling and disease progression is challenging and could pave the way for future drugs aiming to prevent and/or reverse the process. Some valve degenerative processes such as the carcinoid heart disease, drug-induced valvulopathy and degenerative mitral valve disease in small-breed dogs are clearly linked to serotonin. The carcinoid heart is typically characterized by a right-sided valve dysfunction, observed in patients with carcinoid tumors developed from serotonin-producing gut enterochromaffin cells. Fenfluramine or ergot derivatives were linked to mitral and aortic valve dysfunction and share in common the pharmacological property of being 5-HT2B receptor agonists. Finally, some small-breed dogs, such as the Cavalier King Charles Spaniel are highly prone to degenerative mitral valve disease with a prevalence of 40% at 4 years-old, 70% at 7 years-old and 100% in 10-year-old animals. This degeneration has been linked to high serum serotonin, 5-HT2B receptor overexpression and SERT downregulation. Through the comprehension of serotonergic mechanisms involved into these specific situations, new therapeutic approaches could be extended to HVD in general. More recently, a serotonin dependent/ receptor independent mechanism has been suggested in congenital mitral valve prolapse through the filamin-A serotonylation. This review summarizes clinical and molecular mechanisms linking the serotonergic system and heart valve disease, opening the way for future pharmacological research in the field.


Assuntos
Doenças das Valvas Cardíacas/fisiopatologia , Valvas Cardíacas/fisiologia , Serotonina/fisiologia , Animais , Doenças das Valvas Cardíacas/tratamento farmacológico , Humanos
7.
J Biol Chem ; 291(45): 23428-23439, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27621313

RESUMO

Mutations of the AMP-activated kinase gamma 2 subunit (AMPKγ2), N488I (AMPKγ2NI) and R531G (AMPKγ2RG), are associated with Wolff-Parkinson-White (WPW) syndrome, a cardiac disorder characterized by ventricular pre-excitation in humans. Cardiac-specific transgenic overexpression of human AMPKγ2NI or AMPKγ2RG leads to constitutive AMPK activation and the WPW phenotype in mice. However, overexpression of these mutant proteins also caused profound, non-physiological increase in cardiac glycogen, which might abnormally alter the true phenotype. To investigate whether physiological levels of AMPKγ2NI or AMPKγ2RG mutation cause WPW syndrome and metabolic changes in other organs, we generated two knock-in mouse lines on the C57BL/6N background harboring mutations of human AMPKγ2NI and AMPKγ2RG, respectively. Similar to the reported phenotypes of mice overexpressing AMPKγ2NI or AMPKγ2RG in the heart, both lines developed WPW syndrome and cardiac hypertrophy; however, these effects were independent of cardiac glycogen accumulation. Compared with AMPKγ2WT mice, AMPKγ2NI and AMPKγ2RG mice exhibited reduced body weight, fat mass, and liver steatosis when fed with a high fat diet (HFD). Surprisingly, AMPKγ2RG but not AMPKγ2NI mice fed with an HFD exhibited severe kidney injury characterized by glycogen accumulation, inflammation, apoptosis, cyst formation, and impaired renal function. These results demonstrate that expression of AMPKγ2NI and AMPKγ2RG mutations at physiological levels can induce beneficial metabolic effects but that this is accompanied by WPW syndrome. Our data also reveal an unexpected effect of AMPKγ2RG in the kidney, linking lifelong constitutive activation of AMPK to a potential risk for kidney dysfunction in the context of an HFD.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Mutação , Insuficiência Renal/genética , Síndrome de Wolff-Parkinson-White/genética , Animais , Apoptose , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Inflamação/genética , Inflamação/patologia , Rim/metabolismo , Rim/patologia , Masculino , Camundongos Endogâmicos C57BL , Insuficiência Renal/patologia , Síndrome de Wolff-Parkinson-White/patologia
8.
J Biol Chem ; 290(4): 2419-30, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25488665

RESUMO

Src homology and collagen A (ShcA) is an adaptor protein that binds to tyrosine kinase receptors. Its germ line deletion is embryonic lethal with abnormal cardiovascular system formation, and its role in cardiovascular development is unknown. To investigate its functional role in cardiovascular development in mice, ShcA was deleted in cardiomyocytes and vascular smooth muscle cells by crossing ShcA flox mice with SM22a-Cre transgenic mice. Conditional mutant mice developed signs of severe dilated cardiomyopathy, myocardial infarctions, and premature death. No evidence of a vascular contribution to the phenotype was observed. Histological analysis of the heart revealed aberrant sarcomeric Z-disk and M-band structures, and misalignments of T-tubules with Z-disks. We find that not only the ErbB3/Neuregulin signaling pathway but also the baroreceptor reflex response, which have been functionally associated, are altered in the mutant mice. We further demonstrate that ShcA interacts with Caveolin-1 and the costameric protein plasma membrane Ca(2+)/calmodulin-dependent ATPase (PMCA), and that its deletion leads to abnormal dystrophin signaling. Collectively, these results demonstrate that ShcA interacts with crucial proteins and pathways that link Z-disk and costamere.


Assuntos
Costâmeros/metabolismo , Coração/embriologia , Miócitos Cardíacos/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Alelos , Animais , Aorta Torácica/metabolismo , Pressão Sanguínea , Sobrevivência Celular , Distrofina/metabolismo , Ecocardiografia , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Imageamento por Ressonância Magnética , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Fenótipo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Receptor ErbB-3/metabolismo , Proteínas Adaptadoras da Sinalização Shc/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src
9.
Acta Neuropathol ; 131(3): 465-80, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26744351

RESUMO

Microglia are the resident mononuclear phagocytes of the central nervous system and have been implicated in the pathogenesis of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). During neurodegeneration, microglial activation is accompanied by infiltration of circulating monocytes, leading to production of multiple inflammatory mediators in the spinal cord. Degenerative alterations in mononuclear phagocytes are commonly observed during neurodegenerative diseases, yet little is known concerning the mechanisms leading to their degeneration, or the consequences on disease progression. Here we observed that the serotonin 2B receptor (5-HT2B), a serotonin receptor expressed in microglia, is upregulated in the spinal cord of three different transgenic mouse models of ALS. In mutant SOD1 mice, this upregulation was restricted to cells positive for CD11b, a marker of mononuclear phagocytes. Ablation of 5-HT2B receptor in transgenic ALS mice expressing mutant SOD1 resulted in increased degeneration of mononuclear phagocytes, as evidenced by fragmentation of Iba1-positive cellular processes. This was accompanied by decreased expression of key neuroinflammatory genes but also loss of expression of homeostatic microglial genes. Importantly, the dramatic effect of 5-HT2B receptor ablation on mononuclear phagocytes was associated with acceleration of disease progression. To determine the translational relevance of these results, we studied polymorphisms in the human HTR2B gene, which encodes the 5-HT2B receptor, in a large cohort of ALS patients. In this cohort, the C allele of SNP rs10199752 in HTR2B was associated with longer survival. Moreover, patients carrying one copy of the C allele of SNP rs10199752 showed increased 5-HT2B mRNA in spinal cord and displayed less pronounced degeneration of Iba1 positive cells than patients carrying two copies of the more common A allele. Thus, the 5-HT2B receptor limits degeneration of spinal cord mononuclear phagocytes, most likely microglia, and slows disease progression in ALS. Targeting this receptor might be therapeutically useful.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Sistema Fagocitário Mononuclear/patologia , Receptor 5-HT2B de Serotonina/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Microglia/patologia , Sistema Fagocitário Mononuclear/metabolismo , Neurônios Motores/patologia , Reação em Cadeia da Polimerase em Tempo Real , Medula Espinal/patologia
10.
Food Chem Toxicol ; 174: 113650, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36758787

RESUMO

Most people consider that electronic cigarettes are safer than tobacco and are marketed as quit-smoking products. The e-liquid, which usually contains propylene glycol (PG) and vegetable glycerin (VG) in different ratios, nicotine and a wide variety of flavours, is heated by a coil and the aerosol droplets are primarily delivered to the alveolar area where nicotine and other molecules cross the alveolar-capillary barrier (ACB). However, e-cigarettes effects on the ACB are not yet established. In our study, a well-characterised in vitro model of the ACB was exposed to PG and VG and to five flavoured e-liquids with and without nicotine. The vehicles, due to their hypertonic properties, modulated the ACB integrity by modifying occludin expression. Below a 10% concentration, the vehicles did not trigger oxidative stress or cell death. Different results were observed between flavoured e-liquids: while red fruits and mint-eucalyptus disrupted ACB integrity, triggered oxidative stress and cell death, blond tobacco had no worse effect compared to the vehicles. However, the addition of nicotine in the latter e-liquid increased oxidative stress and cell death compared to the vehicles. Finally, mint-eucalyptus e-liquid increased some inflammation markers. Our results revealed that e-liquids alter ACB homeostasis, depending on flavour and nicotine presence.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Nicotina , Humanos , Propilenoglicol , Fumar , Glicerol , Nicotiana , Verduras , Aromatizantes , Excipientes
11.
Cardiovasc Res ; 119(3): 759-771, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36001550

RESUMO

AIMS: Degenerative mitral valve dystrophy (MVD) leading to mitral valve prolapse is the most frequent form of MV disease, and there is currently no pharmacological treatment available. The limited understanding of the pathophysiological mechanisms leading to MVD limits our ability to identify therapeutic targets. This study aimed to reveal the main pathophysiological pathways involved in MVD via the multimodality imaging and transcriptomic analysis of the new and unique knock-in (KI) rat model for the FilaminA-P637Q (FlnA-P637Q) mutation associated-MVD. METHODS AND RESULTS: Wild-type (WT) and KI rats were evaluated morphologically, functionally, and histologically between 3-week-old and 3-to-6-month-old based on Doppler echocardiography, 3D micro-computed tomography (microCT), and standard histology. RNA-sequencing and Assay for Transposase-Accessible Chromatin (ATAC-seq) were performed on 3-week-old WT and KI mitral valves and valvular cells, respectively, to highlight the main signalling pathways associated with MVD. Echocardiographic exploration confirmed MV elongation (2.0 ± 0.1 mm vs. 1.8 ± 0.1, P = 0.001), as well as MV thickening and prolapse in KI animals compared to WT at 3 weeks. 3D MV volume quantified by microCT was significantly increased in KI animals (+58% vs. WT, P = 0.02). Histological analyses revealed a myxomatous remodelling in KI MV characterized by proteoglycans accumulation. A persistent phenotype was observed in adult KI rats. Signalling pathways related to extracellular matrix homeostasis, response to molecular stress, epithelial cell migration, endothelial to mesenchymal transition, chemotaxis and immune cell migration, were identified based on RNA-seq analysis. ATAC-seq analysis points to the critical role of transforming growth factor-ß and inflammation in the disease. CONCLUSION: The KI FlnA-P637Q rat model mimics human myxomatous MVD, offering a unique opportunity to decipher pathophysiological mechanisms related to this disease. Extracellular matrix organization, epithelial cell migration, response to mechanical stress, and a central contribution of immune cells are highlighted as the main signalling pathways leading to myxomatous MVD. Our findings pave the road to decipher underlying molecular mechanisms and the specific role of distinct cell populations in this context.


Assuntos
Prolapso da Valva Mitral , Valva Mitral , Adulto , Humanos , Ratos , Animais , Lactente , Valva Mitral/metabolismo , Filaminas/genética , Filaminas/metabolismo , Transcriptoma , Microtomografia por Raio-X , Prolapso da Valva Mitral/patologia , Fenótipo
12.
Bioorg Med Chem ; 20(15): 4710-5, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22750139

RESUMO

Methylated analogues of imidazoline related compounds (IRC) were prepared; their abilities to bind I(1) imidazoline receptors (I(1)Rs), I(2) imidazoline binding sites (I(2)BS) and α(2)-adrenoceptor subtypes (α(2)ARs) were assessed. Methylation of the heterocyclic moiety of IRC resulted in a significant loss of α(2)AR affinity. Amongst the selective ligands obtained, LNP 630 (4) constitutes the first highly selective I(1)R agent showing hypotensive activity after intravenous administration.


Assuntos
Receptores de Imidazolinas/química , Imidazolinas/química , Imidazolinas/farmacologia , Receptores Adrenérgicos alfa 2/química , Animais , Sítios de Ligação/efeitos dos fármacos , Células CHO , Cricetinae , Humanos , Receptores de Imidazolinas/metabolismo , Imidazolinas/administração & dosagem , Injeções Intravenosas , Ligantes , Masculino , Metilação , Estrutura Molecular , Células PC12 , Ratos , Ratos Endogâmicos SHR , Receptores Adrenérgicos alfa 2/metabolismo , Relação Estrutura-Atividade
13.
Neurol Ther ; 11(3): 981-1042, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35610531

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) resulting in demyelination and neurodegeneration. The therapeutic strategy is now largely based on reducing inflammation with immunosuppressive drugs. Unfortunately, when disease progression is observed, no drug offers neuroprotection apart from its anti-inflammatory effect. In this review, we explore current knowledge on the assessment of neurodegeneration in MS and look at putative targets that might prove useful in protecting the axon from degeneration. Among them, Bruton's tyrosine kinase inhibitors, anti-apoptotic and antioxidant agents, sex hormones, statins, channel blockers, growth factors, and molecules preventing glutamate excitotoxicity have already been studied. Some of them have reached phase III clinical trials and carry a great message of hope for our patients with MS.

14.
Circ Res ; 104(1): 113-23, 2009 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-19023134

RESUMO

By mimicking sympathetic stimulation in vivo, we previously reported that mice globally lacking serotonin 5-HT(2B) receptors did not develop isoproterenol-induced left ventricular hypertrophy. However, the exact cardiac cell type(s) expressing 5-HT(2B) receptors (cardiomyocytes versus noncardiomyocytes) involved in pathological heart hypertrophy was never addressed in vivo. We report here that mice expressing the 5-HT(2B) receptor solely in cardiomyocytes, like global 5-HT(2B) receptor-null mice, are resistant to isoproterenol-induced cardiac hypertrophy and dysfunction, as well as to isoproterenol-induced increases in cytokine plasma-levels. These data reveal a key role of noncardiomyocytes in isoproterenol-induced hypertrophy in vivo. Interestingly, we show that primary cultures of angiotensinogen null adult cardiac fibroblasts are releasing cytokines on stimulation with either angiotensin II or serotonin, but not in response to isoproterenol stimulation, demonstrating a critical role of angiotensinogen in adrenergic-dependent cytokine production. We then show a functional interdependence between AT(1)Rs and 5-HT(2B) receptors in fibroblasts by revealing a transinhibition mechanism that may involve heterodimeric receptor complexes. Both serotonin- and angiotensin II-dependent cytokine production occur via a Src/heparin-binding epidermal growth factor-dependent transactivation of epidermal growth factor receptors in cardiac fibroblasts, supporting a common signaling pathway. Finally, we demonstrate that 5-HT(2B) receptors are overexpressed in hearts from patients with congestive heart failure, this overexpression being positively correlated with cytokine and norepinephrine plasma levels. Collectively, these results reveal for the first time that interactions between AT(1) and 5-HT(2B) receptors coexpressed by noncardiomyocytes are limiting key events in adrenergic agonist-induced, angiotensin-dependent cardiac hypertrophy. Accordingly, antagonists of 5-HT(2B) receptors might represent novel therapeutics for sympathetic overstimulation-dependent heart failure.


Assuntos
Fibroblastos/fisiologia , Insuficiência Cardíaca/fisiopatologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Miocárdio/patologia , Receptor Tipo 1 de Angiotensina/fisiologia , Receptor 5-HT2B de Serotonina/fisiologia , Adulto , Angiotensina II/deficiência , Angiotensina II/fisiologia , Angiotensina II/toxicidade , Animais , Células Cultivadas/metabolismo , Citocinas/sangue , Citocinas/metabolismo , Receptores ErbB/fisiologia , Feminino , Fibroblastos/efeitos dos fármacos , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/patologia , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Humanos , Hipertrofia Ventricular Esquerda/induzido quimicamente , Hipertrofia Ventricular Esquerda/prevenção & controle , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Isoproterenol/toxicidade , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Norepinefrina/fisiologia , Mapeamento de Interação de Proteínas , Antagonistas do Receptor 5-HT2 de Serotonina , Antagonistas da Serotonina/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/fisiologia
16.
Pharmaceutics ; 13(11)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34834271

RESUMO

Serotonin affects many functions in the body, both in the central nervous system (CNS) and the periphery. However, its effect on the blood-brain barrier (BBB) in separating these two worlds has been scarcely investigated. The aim of this work was to characterize the serotonin receptor 5-HT4 in the hCMEC/D3 cell line, in the rat and the human BBB. We also examined the effect of prucalopride, a 5-HT4 receptor agonist, on the permeability of the hCMEC/D3 in an in vitro model of BBB. We then confirmed our observations by in vivo experiments. In this work, we show that the 5-HT4 receptor is expressed by hCMEC/D3 cells and in the capillaries of rat and human brains. Prucalopride increases the BBB permeability by downregulating the expression of the tight junction protein, occludin. This effect is prevented by GR113808, a 5-HT4 receptor antagonist, and is mediated by the Src/ERK1/2 signaling pathway. The canonical G-protein-dependent pathway does not appear to be involved in this phenomenon. Finally, the administration of prucalopride increases the diffusion of Evans blue in the rat brain parenchyma, which is synonymous with BBB permeabilization. All these data indicate that the 5-HT4 receptor contributes to the regulation of BBB permeability.

17.
Curr Med Res Opin ; 37(11): 1855-1858, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34412518

RESUMO

INTRODUCTION: Bradykinin-mediated angioedema is a rare but potentially fatal adverse event. Angioedema induced by angiotensin-converting enzyme (ACE) inhibitors is generally attributed to an inhibition of bradykinin degradation following ACE inhibition. Clinical studies on ACE inhibitors mainly focus on their efficacy. Few examine their potential to generate undesirable adverse effects, particularly with regard to angioedema. CASE DESCRIPTION: We report here a case of angioedema occurring after ramipril initiation in a patient chronically treated with quinapril. Angioedema subsided spontaneously after ramipril discontinuation and quinapril reintroduction. DISCUSSION AND CONCLUSIONS: Our clinical case suggests that despite similar pharmacodynamic properties, quinapril and ramipril do not have the same potential to generate angioedema. To explain this difference, we suggest a potentiation of the effect of bradykinin at the B2 receptor level by ramipril, which does not occur with quinapril. Consequently, angioedema may not always be a class effect of ACE inhibitors.


Assuntos
Angioedema , Inibidores da Enzima Conversora de Angiotensina , Angioedema/induzido quimicamente , Inibidores da Enzima Conversora de Angiotensina/efeitos adversos , Bradicinina , Humanos
18.
PLoS One ; 16(9): e0257022, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34473777

RESUMO

BACKGROUND: The development of new non-surgical treatments dedicated to mitral valve degeneration is limited by the absence of relevant spontaneous and rapidly progressing animal experimental models. ANIMALS: We characterized the spontaneous mitral valve degeneration in two inbred FVB mouse strains compared to C57BL/6J and investigated a contribution of the serotonergic system. METHODS: Males and females FVB/NJ and FVB/NRj were compared to the putative C57BL/6J control at 12, 16, 20 and 24 weeks of age. Body weight, systolic blood pressure, heart rate, urinary 5-hydroxyindoleacetic acid (5-HIAA), whole blood and plasma serotonin, tail bleeding time, blood cell count, plasma TGF-ß1 and plasma natriuretic peptide concentrations were measured. Myocardium and mitral valves were characterized by histology. mRNA mitral expression of 5-HT2A and 5-HT2B receptors was measured in the anterior leaflet. Cardiac anatomy and function were assessed by echocardiography. RESULTS: Compared to C57BL/6J, FVB mice strains did not significantly differ regarding body weight increase, arterial blood pressure and heart rate. A progressive augmentation of plasma pro-ANP was observed in FVB mice. Nevertheless, no cardiac hypertrophy or left-ventricular fibrosis were observed. Accordingly, plasma TGF-ß1 was not different among the three strains. Conversely, FVB mice demonstrated a high prevalence of fibromyxoid highly cellularized and enriched in glycosaminoglycans lesions, inducing major mitral leaflets thickening without increase in length. The increased thickness was correlated with urinary 5-HIAA and blood platelet count. Whole blood serotonin concentration was similar in the two strains but, in FVB, a reduction of plasma serotonin was observed together with an increase of the bleeding time. Finally, echocardiography identified left atrial and left ventricular remodeling associated with thickening of both mitral leaflets and mitral insufficient in 30% of FVB mice but no systolic protrusion of mitral leaflets towards the atrium. CONCLUSION: The FVB mouse strain is highly prone to spontaneous mitral myxomatous degeneration. A contribution of the peripheral serotonergic system is suggested.


Assuntos
Modelos Animais de Doenças , Insuficiência da Valva Mitral/sangue , Insuficiência da Valva Mitral/fisiopatologia , Animais , Fator Natriurético Atrial/sangue , Tempo de Sangramento , Pressão Sanguínea , Ecocardiografia/métodos , Feminino , Frequência Cardíaca , Ácido Hidroxi-Indolacético/urina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Insuficiência da Valva Mitral/diagnóstico por imagem , Insuficiência da Valva Mitral/urina , Contagem de Plaquetas , Serotonina/sangue , Fator de Crescimento Transformador beta1/sangue , Remodelação Ventricular
19.
Sci Rep ; 11(1): 23582, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880312

RESUMO

Degeneration of brainstem serotonin neurons has been demonstrated in ALS patients and mouse models and was found responsible for the development of spasticity. Consistent with involvement of central serotonin pathways, 5-HT2B receptor (5-HT2BR) was upregulated in microglia of ALS mice. Its deletion worsened disease outcome in the Sod1G86R mouse model and led to microglial degeneration. In ALS patients, a polymorphism in HTR2B gene leading to higher receptor expression in CNS, was associated with increased survival in patients as well as prevention of microglial degeneration. Thus, the aim of our study was to determine the effect of a 5-HT2BR agonist : BW723C86 (BW), in the Sod1G86R mouse model. Despite good pharmacokinetic and pharmacological profiles, BW did not ameliorate disease outcome or motor neuron degeneration in a fast progressing mouse model of ALS despite evidence of modulation of microglial gene expression.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Indóis/farmacologia , Receptor 5-HT2B de Serotonina/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Serotonina/metabolismo , Tiofenos/farmacologia , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Degeneração Neural/tratamento farmacológico , Degeneração Neural/metabolismo , Superóxido Dismutase-1/metabolismo
20.
Mol Ther Methods Clin Dev ; 19: 120-138, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33209958

RESUMO

Friedreich ataxia (FA) is currently an incurable inherited mitochondrial disease caused by reduced levels of frataxin (FXN). Cardiac dysfunction is the main cause of premature death in FA. Adeno-associated virus (AAV)-mediated gene therapy constitutes a promising approach for FA, as demonstrated in cardiac and neurological mouse models. While the minimal therapeutic level of FXN protein to be restored and biodistribution have recently been defined for the heart, it is unclear if FXN overexpression could be harmful. Indeed, depending on the vector delivery route and dose administered, the resulting FXN protein level could reach very high levels in the heart, cerebellum, or off-target organs such as the liver. The present study demonstrates safety of FXN cardiac overexpression up to 9-fold the normal endogenous level but significant toxicity to the mitochondria and heart above 20-fold. We show gradual severity with increasing FXN overexpression, ranging from subclinical cardiotoxicity to left ventricle dysfunction. This appears to be driven by impairment of the mitochondria respiratory chain and ultrastructure, which leads to cardiomyocyte subcellular disorganization, cell death, and fibrosis. Overall, this study underlines the need, during the development of gene therapy approaches, to consider appropriate vector expression level, long-term safety, and biomarkers to monitor such events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA