Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Mol Cancer ; 23(1): 61, 2024 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-38519913

RESUMO

BACKGROUND: Immuno-radiotherapy may improve outcomes for patients with advanced solid tumors, although optimized combination modalities remain unclear. Here, we report the colorectal (CRC) cohort analysis from the SABR-PDL1 trial that evaluated the PD-L1 inhibitor atezolizumab in combination with stereotactic body radiation therapy (SBRT) in advanced cancer patients. METHODS: Eligible patients received atezolizumab 1200 mg every 3 weeks until progression or unmanageable toxicity, together with ablative SBRT delivered concurrently with the 2nd cycle (recommended dose of 45 Gy in 3 fractions, adapted upon normal tissue tolerance constraint). SBRT was delivered to at least one tumor site, with at least one additional measurable lesion being kept from the radiation field. The primary efficacy endpoint was one-year progression-free survival (PFS) rate from the start of atezolizumab. Sequential tumor biopsies were collected for deep multi-feature immune profiling. RESULTS: Sixty pretreated (median of 2 prior lines) advanced CRC patients (38 men [63%]; median age, 59 years [range, 20-81 years]; 77% with liver metastases) were enrolled in five centers (France: n = 4, Spain: n = 1) from 11/2016 to 04/2019. All but one (98%) received atezolizumab and 54/60 (90%) received SBRT. The most frequently irradiated site was lung (n = 30/54; 56.3%). Treatment-related G3 (no G4-5) toxicity was observed in 3 (5%) patients. Median OS and PFS were respectively 8.4 [95%CI:5.9-11.6] and 1.4 months [95%CI:1.2-2.6], including five (9%) patients with PFS > 1 year (median time to progression: 19.2 months, including 2/5 MMR-proficient). Best overall responses consisted of stable disease (n = 38; 64%), partial (n = 3; 5%) and complete response (n = 1; 2%). Immune-centric multiplex IHC and RNAseq showed that SBRT redirected immune cells towards tumor lesions, even in the case of radio-induced lymphopenia. Baseline tumor PD-L1 and IRF1 nuclear expression (both in CD3 + T cells and in CD68 + cells) were higher in responding patients. Upregulation of genes that encode for proteins known to increase T and B cell trafficking to tumors (CCL19, CXCL9), migration (MACF1) and tumor cell killing (GZMB) correlated with responses. CONCLUSIONS: This study provides new data on the feasibility, efficacy, and immune context of tumors that may help identifying advanced CRC patients most likely to respond to immuno-radiotherapy. TRIAL REGISTRATION: EudraCT N°: 2015-005464-42; Clinicaltrial.gov number: NCT02992912.


Assuntos
Neoplasias Colorretais , Neoplasias Pulmonares , Radiocirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Anticorpos Monoclonais Humanizados/efeitos adversos , Neoplasias Colorretais/radioterapia , Neoplasias Pulmonares/tratamento farmacológico , Radiocirurgia/efeitos adversos , Adulto Jovem , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino
2.
J Transl Med ; 21(1): 773, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907934

RESUMO

BACKGROUND: KRAS activating mutations are considered the most frequent oncogenic drivers and are correlated with radio-resistance in multiple cancers including non-small cell lung cancer (NSCLC) and colorectal cancer. Although KRAS was considered undruggable until recently, several KRAS inhibitors have recently reached clinical development. Among them, MRTX849 (Mirati Therapeutics) showed encouraging clinical outcomes for the treatment of selected patients with KRASG12C mutated NSCLC and colorectal cancers. In this work, we explore the ability of MRTX1257, a KRASG12C inhibitor analogous to MRTX849, to radio-sensitize KRASG12C+/+ mutated cell lines and tumors. METHODS: Both in vitro and in vivo models of radiotherapy (RT) in association with MRTX1257 were used, with different RAS mutational profiles. We assessed in vitro the radio-sensitizing effect of MRTX1257 in CT26 KRASG12C+/+, CT26 WT, LL2 WT and LL2 NRAS KO (LL2 NRAS-/-) cell lines. In vivo, we used syngeneic models of subcutaneous CT26 KRASG12C+/+ tumors in BALB/c mice and T cell deficient athymic nu/nu mice to assess both the radio-sensitizing effect of MRTX1257 and its immunological features. RESULTS: MRTX1257 was able to radio-sensitize CT26 KRASG12C+/+ cells in vitro in a time and dose dependent manner. Moreover, RT in association with MRTX1257 in BALB/c mice bearing CT26 KRASG12C+/+ subcutaneous tumors resulted in an observable cure rate of 20%. However, no durable response was observed with similar treatment in athymic nude mice. The analysis of the immune microenvironment of CT26 KRASG12C+/+ tumors following RT and MRTX1257 showed an increase in the proportion of various cell subtypes including conventional CD4 + T cells, dendritic cells type 2 (cDC2) and inflammatory monocytes. Furthermore, the expression of PD-L1 was dramatically down-regulated within both tumor and myeloid cells, thus illustrating the polarization of the tumor microenvironment towards a pro-inflammatory and anti-tumor phenotype following the combined treatment. CONCLUSION: This work is the first to demonstrate in vitro as in vivo the radio-sensitizing effect of MRTX1257, a potent KRASG12C inhibitor compatible with oral administration, in CT26 KRASG12C mutated cell lines and tumors. This is a first step towards the use of new combinatorial strategies using KRAS inhibitors and RT in KRASG12C mutated tumors, which are the most represented in NSCLC with 14% of patients harboring this mutational profile.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Camundongos Nus , Mutação/genética , Microambiente Tumoral
3.
Nanomedicine ; 50: 102676, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37084803

RESUMO

Clinical trials incorporating metallic nanoparticles (NPs) have recently begun. Radiotherapy planning does not take into account NPs concentrations observed in the patients' target volumes. In the framework of the NANOCOL clinical trial including patients treated for locally advanced cervical cancers, this study proposes a complete method to evaluate the radiation-induced biological effects of NPs. For this, calibration phantom was developed and MRI sequences with variable flip angles were acquired. This process allowed the quantification of NPs in the tumor of 4 patients, which was compared to the results of mass spectrometry obtained from 3 patient biopsies. The concentration of the NPs was reproduced in 3D cell models. Based on clonogenic assays, the radio-enhancement effects were quantified for radiotherapy and brachytherapy, and the impact in terms of local control was evaluated. T1 signal change in GTVs revealed NPs accumulation ∼12.4 µmol/L, in agreement with mass spectrometry. Radio-enhancement effects of about 15 % at 2 Gy were found for both modalities, with a positive impact on local tumor control. Even if further follow-up of patients in this and subsequent clinical trials will be necessary to assess the reliability of this proof of concept, this study opens the way to the integration of a dose modulation factor to better take into account the impact of NPs in radiotherapy treatment.


Assuntos
Braquiterapia , Nanopartículas Metálicas , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/radioterapia , Neoplasias do Colo do Útero/patologia , Reprodutibilidade dos Testes , Braquiterapia/métodos , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/química , Imageamento por Ressonância Magnética/métodos , Dosagem Radioterapêutica
4.
Int J Mol Sci ; 24(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36835566

RESUMO

Circulating monocytes are recruited in damaged tissues to generate macrophages that modulate disease progression. Colony-stimulating factor-1 (CSF-1) promotes the generation of monocyte-derived macrophages, which involves caspase activation. Here, we demonstrate that activated caspase-3 and caspase-7 are located to the vicinity of the mitochondria in CSF1-treated human monocytes. Active caspase-7 cleaves p47PHOX at aspartate 34, which promotes the formation of the NADPH (nicotinamide adenine dinucleotide phosphate) oxidase complex NOX2 and the production of cytosolic superoxide anions. Monocyte response to CSF-1 is altered in patients with a chronic granulomatous disease, which are constitutively defective in NOX2. Both caspase-7 down-regulation and radical oxygen species scavenging decrease the migration of CSF-1-induced macrophages. Inhibition or deletion of caspases prevents the development of lung fibrosis in mice exposed to bleomycin. Altogether, a non-conventional pathway that involves caspases and activates NOX2 is involved in CSF1-driven monocyte differentiation and could be therapeutically targeted to modulate macrophage polarization in damaged tissues.


Assuntos
Caspases , Fator Estimulador de Colônias de Macrófagos , Humanos , Animais , Camundongos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Caspase 7/metabolismo , Caspases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Macrófagos/metabolismo , NADPH Oxidases/metabolismo , Monócitos/metabolismo
5.
Br J Cancer ; 123(5): 762-771, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32546832

RESUMO

BACKGROUND: Subcutaneous mouse tumour models are widely used for the screening of novel antitumour treatments, although these models are poor surrogate models of human cancers. METHODS: We compared the antitumour efficacy of the combination of ionising radiation (IR) with two DNA damage response inhibitors, the PARP inhibitor olaparib and the ATR inhibitor AZD6738 (ceralasertib), in subcutaneous versus orthotopic cancer models. RESULTS: Olaparib delayed the growth of irradiated Lewis lung carcinoma (LL2) subcutaneous tumours, in agreement with previous reports in human cell lines. However, the olaparib plus IR combination showed a very narrow therapeutic window against LL2 lung orthotopic tumours, with nearly no additional antitumour effect compared with that of IR alone, and tolerability issues emerged at high doses. The addition of AZD6738 greatly enhanced the efficacy of the olaparib plus IR combination treatment against subcutaneous but not orthotopic LL2 tumours. Moreover, olaparib plus AZD6738 administration concomitant with IR even worsened the response to radiation of head and neck orthotopic tumours and induced mucositis. CONCLUSIONS: These major differences in the responses to treatments between subcutaneous and orthotopic models highlight the importance of using more pathologically relevant models, such as syngeneic orthotopic models, to determine the most appropriate therapeutic approaches for translation to the clinic.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Carcinoma Pulmonar de Lewis/radioterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quinase 1 do Ponto de Checagem/metabolismo , Quimiorradioterapia , Feminino , Indóis , Camundongos , Camundongos Endogâmicos C57BL , Morfolinas , Ftalazinas/administração & dosagem , Piperazinas/administração & dosagem , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Pirimidinas/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas , Sulfóxidos/administração & dosagem
6.
Eur Respir J ; 51(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29496785

RESUMO

Radiation-induced lung fibrosis (RIF) is a delayed side-effect of chest radiotherapy, frequently associated with macrophage infiltration.We aimed to characterise the role of pulmonary macrophages in RIF using human lung biopsies from patients receiving radiotherapy for thorax malignancies and a RIF model developed in C57BL/6 mice after 16-Gy thorax irradiation.High numbers of macrophages (both interstitial and alveolar) were detected in clinical and preclinical RIF. In the preclinical model, upregulation of T-helper (Th)2 cytokines was measured, whereas Th1 cytokines were downregulated in RIF tissue lysate. Bronchoalveolar lavage demonstrated upregulation of both types of cytokines. At steady state, tissue-infiltrating macrophages (IMs) expressed 10-fold more arginase (Arg)-1 than alveolar macrophages (AMs), and a 40-fold upregulation of Arg-1 was found in IMs isolated from RIF. IMs, but not AMs, were able to induce myofibroblast activation in vitro In addition, whereas depletion of AMs using Clodrosome didn't affect RIF score, depletion of IMs using a clinically available colony-stimulating factor receptor-1 (CSF1R) neutralising antibody was antifibrotic.These findings suggest differential contributions of alveolar versus interstitial macrophages in RIF, highlighting the fibrogenic role of IMs. The CSF1/CSF1R pathway was identified as a new therapeutic target to inhibit RIF.


Assuntos
Lesão Pulmonar/prevenção & controle , Macrófagos/citologia , Fibrose Pulmonar/prevenção & controle , Pneumonite por Radiação/prevenção & controle , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Animais , Ácido Clodrônico/farmacologia , Citocinas/metabolismo , Regulação para Baixo , Feminino , Humanos , Lipossomos/química , Pulmão/metabolismo , Lesão Pulmonar/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Regulação para Cima
7.
Eur Respir J ; 51(2)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29444918

RESUMO

In May 2017, the second European Respiratory Society research seminar of the Thoracic Oncology Assembly entitled "Immunotherapy, a new standard of care in thoracic malignancies?" was held in Paris, France. This seminar provided an opportunity to review the basis of antitumour immunity and to explain how immune checkpoint inhibitors (ICIs) work. The main therapeutic trials that have resulted in marketing authorisations for use of ICIs in lung cancer were reported. A particular focus was on the toxicity of these new molecules in relation to their immune-related adverse events. The need for biological selection, currently based on immunohistochemistry testing to identify the tumour expression of programmed death ligand (PD-L)1, was stressed, as well as the need to harmonise PD-L1 testing and techniques. Finally, sessions were dedicated to the combination of ICIs and radiotherapy and the place of ICIs in nonsmall cell lung cancer with oncogenic addictions. Finally, an important presentation was dedicated to the future of antitumour vaccination and of all ongoing trials in thoracic oncology.


Assuntos
Vacinas Anticâncer/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Imunoterapia/métodos , Neoplasias Pulmonares/terapia , Pneumologia/organização & administração , Pneumologia/normas , Neoplasias Torácicas/imunologia , Anticorpos Monoclonais/uso terapêutico , Antígeno B7-H1/análise , Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas/terapia , Ensaios Clínicos como Assunto , Congressos como Assunto , Europa (Continente) , Humanos , Imuno-Histoquímica , Oncogenes , Paris , Seleção de Pacientes , Sociedades Médicas , Padrão de Cuidado , Neoplasias Torácicas/terapia
9.
Phys Med Biol ; 69(10)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38593817

RESUMO

Objective. Severe radiation-induced lymphopenia occurs in 40% of patients treated for primary brain tumors and is an independent risk factor of poor survival outcomes. We developed anin-silicoframework that estimates the radiation doses received by lymphocytes during volumetric modulated arc therapy brain irradiation.Approach. We implemented a simulation consisting of two interconnected compartmental models describing the slow recirculation of lymphocytes between lymphoid organs (M1) and the bloodstream (M2). We used dosimetry data from 33 patients treated with chemo-radiation for glioblastoma to compare three cases of the model, corresponding to different physical and biological scenarios: (H1) lymphocytes circulation only in the bloodstream i.e. circulation inM2only; (H2) lymphocytes recirculation between lymphoid organs i.e. circulation inM1andM2interconnected; (H3) lymphocytes recirculation between lymphoid organs and deep-learning computed out-of-field (OOF) dose to head and neck (H&N) lymphoid structures. A sensitivity analysis of the model's parameters was also performed.Main results. For H1, H2 and H3 cases respectively, the irradiated fraction of lymphocytes was 99.8 ± 0.7%, 40.4 ± 10.2% et 97.6 ± 2.5%, and the average dose to irradiated pool was 309.9 ± 74.7 mGy, 52.6 ± 21.1 mGy and 265.6 ± 48.5 mGy. The recirculation process considered in the H2 case implied that irradiated lymphocytes were irradiated in the field only 1.58 ± 0.91 times on average after treatment. The OOF irradiation of H&N lymphoid structures considered in H3 was an important contribution to lymphocytes dose. In all cases, the estimated doses are low compared with lymphocytes radiosensitivity, and other mechanisms could explain high prevalence of RIL in patients with brain tumors.Significance. Our framework is the first to take into account OOF doses and recirculation in lymphocyte dose assessment during brain irradiation. Our results demonstrate the need to clarify the indirect effects of irradiation on lymphopenia, in order to potentiate the combination of radio-immunotherapy or the abscopal effect.


Assuntos
Neoplasias Encefálicas , Linfócitos , Dosagem Radioterapêutica , Humanos , Linfócitos/efeitos da radiação , Linfócitos/citologia , Neoplasias Encefálicas/radioterapia , Radiometria , Doses de Radiação , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos , Encéfalo/efeitos da radiação
10.
Adv Mater ; : e2400949, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761135

RESUMO

Cisplatin chemoradiotherapy (CRT) is the established standard of care for managing locally advanced human papillomavirus-positive head/neck carcinoma. The typically young patients may suffer serious and long-time side effects caused by the treatment, such as dysphagia, and hearing loss. Thus, ensuring a satisfactory post-treatment quality of life is paramount. One potential replacing approach to the classical CRT involves the combination of standard-dose radiotherapy and radiosensitizers such as noble metal nanoparticles (NPs). However, several concerns about size, shape, and biocompatibility limit the translation of metal nanomaterials to the clinical practice. Here, it is demonstrated that a new model of nonpersistent gold nanoarchitectures containing cisplatin (NAs-Cluster-CisPt) generates, in combination with radiotherapy, a significant in vivo tumor-reducing effect compared to the standard CRT, achieving a complete tumor clearance in 25% of the immunocompetent models that persist for 60 days. These findings, together with the negligible amount of metals recognized in the excretory organs, highlight that the concurrent administration of NAs-Cluster-CisPt and radiotherapy has the potential to overcome some clinical limitations associated to NP-based approaches while enhancing the treatment outcome with respect to standard CRT. Overall, despite further mechanistic investigations being essential, these data support the exploiting of nonpersistent metal-nanomaterial-mediated approaches for oral cancer management.

11.
Anticancer Drugs ; 24(6): 599-608, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23698251

RESUMO

Cervical carcinoma remains a leading cause of female mortality worldwide and over 90% of these tumors contain the human papillomavirus (HPV) genome. Cross-talk between the epidermal growth factor receptor and HPV has been reported and is implicated in tumor progression. The combination of the antiviral compound cidofovir (Cd) with the monoclonal antibody antiepidermal growth factor receptor cetuximab (Cx) was evaluated. HPV-positive (HeLa and Me180) and HPV-negative (C33A, H460 and A549) human cancer cell lines were incubated with Cd (1-10 µg/ml) and/or Cx (10 or 50 µg/ml). The antitumor effect of the combination was assessed in vitro using a clonogenic survival assay, cell cycle analysis, and phospho-H2AX level. Tumor growth delay was assayed in vivo using xenograft models. A pan-genomic analysis was carried out to identify the genes expressed differentially in untreated HeLa HPV-positive cells versus cells treated by the Cd-Cx combination. The Cd-Cx combination inhibited proliferation in all the cell lines tested. The association of Cd and Cx exerted a synergistic activity on HPV-positive but not on HPV-negative cell lines. The combination delayed tumor growth of HPV-positive tumors in vivo; however, no efficacy was reported on HPV-negative C33A xenografts nor on cell lines treated by single-drug therapy. The combination induced an S-phase arrest associated with an enhanced level of the double-strand break in Me180 and HeLa cell lines. Gene profiling assays showed a significant differential modulation of genes in HeLa cell lines treated with the combination involving the EGR-1 transcription factor. The current data support a synergistic antiproliferative action of the Cd-Cx combination on HPV-related cervical tumors.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Antivirais/farmacologia , Citosina/análogos & derivados , Organofosfonatos/farmacologia , Papillomaviridae/efeitos dos fármacos , Neoplasias do Colo do Útero/tratamento farmacológico , Animais , Anticorpos Monoclonais Humanizados/administração & dosagem , Antineoplásicos/administração & dosagem , Antivirais/administração & dosagem , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cetuximab , Cidofovir , Citosina/administração & dosagem , Citosina/farmacologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , Organofosfonatos/administração & dosagem
12.
Methods Cell Biol ; 174: 17-30, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36710048

RESUMO

The use of ionizing radiation (IR) is a cornerstone for the treatment of cancer and radiotherapy (RT) is used in roughly 50% of cancer patients. It is now well established that RT exerts widespread effects on the tumor stroma, including the immune environment. Together with its deeply characterized effects on the lymphoid compartment, RT also deeply affects the myeloid cell compartment. Fluorescence-activated flow cytometry is one of the most widely used technologies in immunology, allowing the multiparametric analysis of cells on a cell-by-cell basis. Here, we provide a detailed flow cytometry protocol to analyze the myeloid cell populations of human papillomavirus (HPV)-positive TC1/Luc tumors engrafted in the oral mucosa of immunocompetent mice, and to evaluate their modulations in response to RT. The same method, with slight modifications, can be used to study the tumor myeloid cells from a variety of other mouse tumors.


Assuntos
Células Mieloides , Neoplasias , Animais , Humanos , Camundongos , Neoplasias/radioterapia , Radiação Ionizante , Células Mieloides/efeitos da radiação , Citometria de Fluxo
13.
Int Rev Cell Mol Biol ; 378: 1-30, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37438014

RESUMO

Radiation-induced lymphopenia (RIL) is characterized by a significant decrease in the absolute number of lymphocytes circulating in the blood after radiotherapy. With the major shift in cancer management initiated by cancer immunotherapy (IT), the reduction of incidence of RIL appears today as an extremely promising way of potentiating the synergy between radiotherapy and immunotherapy. However, the causes of RIL and mechanisms involved are still poorly understood. Improving our knowledge on RIL is therefore essential to limit it and thus improve the quality of care delivered to patients. The objective of this review is to provide a global view of RIL from a clinical point of view, with particular emphasis on recent knowledge and avenues explored to explain RIL and especially its depletion and remission kinetics. An opening on treatment concepts to be rethought is conducted in the context of combined RT/IT treatments.


Assuntos
Linfopenia , Humanos , Linfopenia/etiologia , Imunoterapia/efeitos adversos
14.
J Immunother Cancer ; 11(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37270182

RESUMO

BACKGROUND: Irradiation (IR) and immune checkpoint inhibitor (ICI) combination is a promising treatment modality. However, local and distance treatment failure and resistance can occur. To counteract this resistance, several studies propose CD73, an ectoenzyme, as a potential target to improve the antitumor efficiency of IR and ICI. Although CD73 targeting in combination with IR and ICI has shown attractive antitumor effects in preclinical models, the rationale for CD73 targeting based on CD73 tumor expression level deserves further investigations. METHODS: Here we evaluated for the first time the efficacy of two administration regimens of CD73 neutralizing antibody (one dose vs four doses) in combination with IR according to the expression level of CD73 in two subcutaneous tumor models expressing different levels of CD73. RESULTS: We showed that CD73 is weakly expressed by MC38 tumors even after IR, when compared with the TS/A model that highly expressed CD73. Treatment with four doses of anti-CD73 improved the TS/A tumor response to IR, while it was ineffective against the CD73 low-expressing MC38 tumors. Surprisingly, a single dose of anti-CD73 exerted a significant antitumor activity against MC38 tumors. On CD73 overexpression in MC38 cells, four doses of anti-CD73 were required to improve the efficacy of IR. Mechanistically, a correlation between a downregulation of iCOS expression in CD4+ T cells and an improved response to IR after anti-CD73 treatment was observed and iCOS targeting could restore an impaired benefit from anti-CD73 treatment. CONCLUSIONS: These data emphasize the importance of the dosing regimen for anti-CD73 treatment to improve tumor response to IR and identify iCOS as part of the underlying molecular mechanisms. Our data suggest that the selection of appropriate dosing regimen is required to optimize the therapeutic efficacy of immunotherapy-radiotherapy combinations.


Assuntos
Neoplasias , Humanos , Regulação para Baixo , Neoplasias/terapia , Linfócitos T/metabolismo , Imunoterapia , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo
15.
Oncoimmunology ; 12(1): 2222560, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37363104

RESUMO

Focal radiation therapy (RT) has attracted considerable attention as a combinatorial partner for immunotherapy (IT), largely reflecting a well-defined, predictable safety profile and at least some potential for immunostimulation. However, only a few RT-IT combinations have been tested successfully in patients with cancer, highlighting the urgent need for an improved understanding of the interaction between RT and IT in both preclinical and clinical scenarios. Every year since 2016, ImmunoRad gathers experts working at the interface between RT and IT to provide a forum for education and discussion, with the ultimate goal of fostering progress in the field at both preclinical and clinical levels. Here, we summarize the key concepts and findings presented at the Sixth Annual ImmunoRad conference.


Assuntos
Neoplasias , Humanos , Terapia Combinada , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , Imunoterapia
16.
Cancers (Basel) ; 14(7)2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35406477

RESUMO

Despite major research and clinical efforts, lung cancer remains the leading cause of cancer-related death. While the delivery of conformal radiotherapy and image guidance of stereotactic body radiotherapy (SBRT) have revolutionized the treatment of early-stage non-small-cell lung cancer (NSCLC), additional research is needed to elucidate underlying mechanisms of resistance and identify novel therapeutic combinations. Clinical progress relies on the successful translation of pre-clinical work, which so far has not always yielded expected results. Improved clinical modelling involves characterizing the preclinical models and selecting appropriate experimental designs that faithfully mimic precise clinical scenarios. Here, we review the current role of SBRT and the scope of pre-clinical armamentarium at our disposal to improve successful clinical translation of pre-clinical research in the radiation oncology of NSCLC.

17.
J Immunother Cancer ; 10(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35301235

RESUMO

BACKGROUND: Transforming growth factor-beta (TGFß) can limit the efficacy of cancer treatments, including radiotherapy (RT), by inducing an immunosuppressive tumor environment. The association of TGFß with impaired T cell infiltration and antitumor immunity is known, but the mechanisms by which TGFß participates in immune cell exclusion and limits the efficacy of antitumor therapies warrant further investigations. METHODS: We used the clinically relevant TGFß receptor 2 (TGFßR2)-neutralizing antibody MT1 and the small molecule TGFßR1 inhibitor LY3200882 and evaluated their efficacy in combination with RT against murine orthotopic models of head and neck and lung cancer. RESULTS: We demonstrated that TGFß pathway inhibition strongly increased the efficacy of RT. TGFßR2 antibody upregulated interferon beta expression in tumor-associated macrophages within the irradiated tumors and favored T cell infiltration at the periphery and within the core of the tumor lesions. We highlighted that both the antitumor efficacy and the increased lymphocyte infiltration observed with the combination of MT1 and RT were dependent on type I interferon signaling. CONCLUSIONS: These data shed new light on the role of TGFß in limiting the efficacy of RT, identifying a novel mechanism involving the inhibition of macrophage-derived type I interferon production, and fostering the use of TGFßR inhibition in combination with RT in therapeutic strategies for the management of head and neck and lung cancer.


Assuntos
Receptores de Fatores de Crescimento Transformadores beta , Macrófagos Associados a Tumor , Animais , Linhagem Celular Tumoral , Humanos , Interferon beta/farmacologia , Camundongos , Fator de Crescimento Transformador beta
18.
Int J Radiat Oncol Biol Phys ; 112(4): 975-985, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34808254

RESUMO

PURPOSE: Radiation-induced cellular senescence is a double-edged sword, acting as both a tumor suppression process limiting tumor proliferation, and a crucial process contributing to normal tissue injury. Endothelial cells play a role in normal tissue injury after radiation therapy. Recently, a study observed an accumulation of senescent endothelial cells (ECs) around radiation-induced lung focal lesions following stereotactic radiation injury in mice. However, the effect of radiation on EC senescence remains unclear because it depends on dose and fractionation, and because the senescent phenotype is heterogeneous and dynamic. METHODS AND MATERIALS: Using a systems biology approach in vitro, we deciphered the dynamic senescence-associated transcriptional program induced by irradiation. RESULTS: Flow cytometry and single-cell RNA sequencing experiments revealed the heterogeneous senescent status of irradiated ECs and allowed to deciphered the molecular program involved in this status. We identified the Interleukin-1 signaling pathway as a key player in the radiation-induced premature senescence of ECs, as well as the endothelial-to-mesenchymal transition process, which shares strong hallmarks of senescence. CONCLUSIONS: Our work provides crucial information on the dynamics of the radiation-induced premature senescence process, the effect of the radiation dose, as well as the molecular program involved in the heterogeneous senescent status of ECs.


Assuntos
Senescência Celular , Células Endoteliais , Animais , Células Endoteliais/patologia , Camundongos , Fenótipo , Transdução de Sinais
19.
J Cell Mol Med ; 15(7): 1582-92, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20716116

RESUMO

Rheumatic autoimmune disorders are characterized by a sustained pro-inflammatory microenvironment associated with impaired function of endothelial progenitor cells (EPC) and concomitant vascular defects. Guanylate binding protein-1 (GBP-1) is a marker and intracellular regulator of the inhibition of proliferation, migration and invasion of endothelial cells induced by several pro-inflammatory cytokines. In addition, GBP-1 is actively secreted by endothelial cells. In this study, significantly increased levels of GBP-1 were detected in the sera of patients with chronic inflammatory disorders. Accordingly we investigated the function of GBP-1 in EPC. Interestingly, stable expression of GBP-1 in T17b EPC induced premature differentiation of these cells, as indicated by a robust up-regulation of both Flk-1 and von Willebrand factor expression. In addition, GBP-1 inhibited the proliferation and migration of EPC in vitro. We confirmed that GBP-1 inhibited vessel-directed migration of EPC at the tissue level using the rat arterio-venous loop model as a novel quantitative in vivo migration assay. Overall, our findings indicate that GBP-1 contributes to vascular dysfunction in chronic inflammatory diseases by inhibiting EPC angiogenic activity via the induction of premature EPC differentiation.


Assuntos
Endotélio Vascular/patologia , Proteínas de Ligação ao GTP/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Adulto , Idoso , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Diferenciação Celular , Movimento Celular , Doença Crônica , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Feminino , Humanos , Camundongos , Pessoa de Meia-Idade , Ratos , Células-Tronco/citologia , Células-Tronco/metabolismo
20.
Eur J Immunol ; 40(8): 2182-9, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20480502

RESUMO

The IFN-inducible human IFI16 gene is highly expressed in endothelial cells as well as epithelial and hematopoietic tissues. Previous gene array analysis of human umbilical vein endothelial cells overexpressing IFI16 has revealed an increased expression of genes involved in inflammation and apoptosis. In this study, protein array analysis of the IFI16 secretome showed an increased production of chemokines, cytokines and adhesion molecules responsible for leukocyte chemotaxis. Functional analysis of the promoter for CCL20, the chemokine responsible for leukocyte recruitment in the early steps of inflammation, by site-specific mutation demonstrated that NF-κB is the main mediator of CCL20 induction at the transcriptional level. Finally, both Langerhans DC and B-lymphocyte migration triggered by supernatants from IFI16-overexpressing endothelial cells was partially inhibited by Ab inactivating CCL4, CCL5 and CCL20 chemokines. Altogether, these results demonstrate that the IFI16 gene, through its secretome, regulates proinflammatory activity of endothelial cells, thus corroborating its role in the early steps of inflammation.


Assuntos
Linfócitos B/metabolismo , Células Endoteliais/metabolismo , Células de Langerhans/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Anticorpos Bloqueadores/farmacologia , Linfócitos B/citologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Quimiocina CCL20/genética , Quimiocina CCL20/imunologia , Quimiocina CCL20/metabolismo , Quimiotaxia de Leucócito/imunologia , Células Endoteliais/citologia , Células Endoteliais/imunologia , Inflamação , Células de Langerhans/citologia , Células de Langerhans/efeitos dos fármacos , Células de Langerhans/imunologia , Mutagênese Sítio-Dirigida , NF-kappa B/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Fosfoproteínas/genética , Fosfoproteínas/imunologia , Regiões Promotoras Genéticas/genética , Análise Serial de Proteínas , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA