Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nature ; 614(7948): 572-579, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36697823

RESUMO

The transcription factor TFEB is a master regulator of lysosomal biogenesis and autophagy1. The phosphorylation of TFEB by the mechanistic target of rapamycin complex 1 (mTORC1)2-5 is unique in its mTORC1 substrate recruitment mechanism, which is strictly dependent on the amino acid-mediated activation of the RagC GTPase activating protein FLCN6,7. TFEB lacks the TOR signalling motif responsible for the recruitment of other mTORC1 substrates. We used cryogenic-electron microscopy to determine the structure of TFEB as presented to mTORC1 for phosphorylation, which we refer to as the 'megacomplex'. Two full Rag-Ragulator complexes present each molecule of TFEB to the mTOR active site. One Rag-Ragulator complex is bound to Raptor in the canonical mode seen previously in the absence of TFEB. A second Rag-Ragulator complex (non-canonical) docks onto the first through a RagC GDP-dependent contact with the second Ragulator complex. The non-canonical Rag dimer binds the first helix of TFEB with a RagCGDP-dependent aspartate clamp in the cleft between the Rag G domains. In cellulo mutation of the clamp drives TFEB constitutively into the nucleus while having no effect on mTORC1 localization. The remainder of the 108-amino acid TFEB docking domain winds around Raptor and then back to RagA. The double use of RagC GDP contacts in both Rag dimers explains the strong dependence of TFEB phosphorylation on FLCN and the RagC GDP state.


Assuntos
Lisossomos , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas Monoméricas de Ligação ao GTP , Aminoácidos/metabolismo , Domínio Catalítico , Guanosina Difosfato/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Fosforilação , Multimerização Proteica , Proteína Regulatória Associada a mTOR/metabolismo , Transdução de Sinais
2.
Nature ; 585(7826): 597-602, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32612235

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) is a key metabolic hub that controls the cellular response to environmental cues by exerting its kinase activity on multiple substrates1-3. However, whether mTORC1 responds to diverse stimuli by differentially phosphorylating specific substrates is poorly understood. Here we show that transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy4,5, is phosphorylated by mTORC1 via a substrate-specific mechanism that is mediated by Rag GTPases. Owing to this mechanism, the phosphorylation of TFEB-unlike other substrates of mTORC1, such as S6K and 4E-BP1- is strictly dependent on the amino-acid-mediated activation of RagC and RagD GTPases, but is insensitive to RHEB activity induced by growth factors. This mechanism has a crucial role in Birt-Hogg-Dubé syndrome, a disorder that is caused by mutations in the RagC and RagD activator folliculin (FLCN) and is characterized by benign skin tumours, lung and kidney cysts and renal cell carcinoma6,7. We found that constitutive activation of TFEB is the main driver of the kidney abnormalities and mTORC1 hyperactivity in a mouse model of Birt-Hogg-Dubé syndrome. Accordingly, depletion of TFEB in kidneys of these mice fully rescued the disease phenotype and associated lethality, and normalized mTORC1 activity. Our findings identify a mechanism that enables differential phosphorylation of mTORC1 substrates, the dysregulation of which leads to kidney cysts and cancer.


Assuntos
Síndrome de Birt-Hogg-Dubé/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/deficiência , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Síndrome de Birt-Hogg-Dubé/genética , Síndrome de Birt-Hogg-Dubé/patologia , Linhagem Celular , Modelos Animais de Doenças , Ativação Enzimática , Células HeLa , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Camundongos , Camundongos Knockout , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Especificidade por Substrato , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética
3.
Traffic ; 23(5): 238-269, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35343629

RESUMO

Since the discovery of lysosomes more than 70 years ago, much has been learned about the functions of these organelles. Lysosomes were regarded as exclusively degradative organelles, but more recent research has shown that they play essential roles in several other cellular functions, such as nutrient sensing, intracellular signalling and metabolism. Methodological advances played a key part in generating our current knowledge about the biology of this multifaceted organelle. In this review, we cover current methods used to analyze lysosome morphology, positioning, motility and function. We highlight the principles behind these methods, the methodological strategies and their advantages and limitations. To extract accurate information and avoid misinterpretations, we discuss the best strategies to identify lysosomes and assess their characteristics and functions. With this review, we aim to stimulate an increase in the quantity and quality of research on lysosomes and further ground-breaking discoveries on an organelle that continues to surprise and excite cell biologists.


Assuntos
Lisossomos , Redes e Vias Metabólicas , Lisossomos/metabolismo , Transdução de Sinais
4.
Nat Commun ; 15(1): 406, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195686

RESUMO

Tuberous Sclerosis Complex (TSC) is caused by TSC1 or TSC2 mutations, leading to hyperactivation of mechanistic target of rapamycin complex 1 (mTORC1) and lesions  in multiple organs including lung (lymphangioleiomyomatosis) and kidney (angiomyolipoma and renal cell carcinoma). Previously, we found that TFEB is constitutively active in TSC. Here, we generated two mouse models of TSC in which kidney pathology is the primary phenotype. Knockout of TFEB rescues kidney pathology and overall survival, indicating that TFEB is the primary driver of renal disease in TSC. Importantly, increased mTORC1 activity in the TSC2 knockout kidneys is normalized by TFEB knockout. In TSC2-deficient cells, Rheb knockdown or Rapamycin treatment paradoxically increases TFEB phosphorylation at the mTORC1-sites and relocalizes TFEB from nucleus to cytoplasm. In mice, Rapamycin treatment normalizes lysosomal gene expression, similar to TFEB knockout, suggesting that Rapamycin's benefit in TSC is TFEB-dependent. These results change the view of the mechanisms of mTORC1 hyperactivation in TSC and may lead to therapeutic avenues.


Assuntos
Neoplasias Renais , Esclerose Tuberosa , Animais , Camundongos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos Knockout , Sirolimo/farmacologia , Esclerose Tuberosa/genética
5.
J Biol Chem ; 287(53): 44603-18, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23115246

RESUMO

Neutrophils use diverse mechanisms to kill pathogens including phagocytosis, exocytosis, generation of reactive oxygen species (ROS), and neutrophil extracellular traps. These mechanisms rely on their ability to mobilize intracellular organelles and to deliver granular cargoes to specific cellular compartments or into the extracellular milieu, but the molecular mechanisms regulating vesicular trafficking in neutrophils are not well understood. MUNC13-4 is a RAB27A effector that coordinates exocytosis in hematopoietic cells, and its deficiency is associated with the human immunodeficiency familial hemophagocytic lymphohistiocytosis type 3. In this work, we have established an essential role for MUNC13-4 in selective vesicular trafficking, phagosomal maturation, and intracellular bacterial killing in neutrophils. Using neutrophils from munc13-4 knock-out (KO) mice, we show that MUNC13-4 is necessary for the regulation of p22(phox)-expressing granule trafficking to the plasma membrane and regulates extracellular ROS production. MUNC13-4 was also essential for the regulation of intracellular ROS production induced by Pseudomonas aeruginosa despite normal trafficking of p22(phox)-expressing vesicles toward the phagosome. Importantly, in the absence of MUNC13-4, phagosomal maturation was impaired as observed by the defective delivery of azurophilic granules and multivesicular bodies to the phagosome. Significantly, this mechanism was intact in RAB27A KO neutrophils. Intracellular bacterial killing was markedly impaired in MUNC13-4 KO neutrophils. MUNC13-4-deficient cells showed a significant increase in neutrophil extracellular trap formation but were unable to compensate for the impaired bacterial killing. Altogether, these findings characterize novel functions of MUNC13-4 in the innate immune response of the neutrophil and have direct implications for the understanding of immunodeficiencies in patients with MUNC13-4 deficiency.


Assuntos
Proteínas de Membrana/imunologia , Neutrófilos/imunologia , Fagossomos/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/fisiologia , Animais , Células Cultivadas , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo , Fagocitose , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/imunologia , Espécies Reativas de Oxigênio/imunologia
6.
Nat Commun ; 14(1): 3911, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400440

RESUMO

Batten disease, one of the most devastating types of neurodegenerative lysosomal storage disorders, is caused by mutations in CLN3. Here, we show that CLN3 is a vesicular trafficking hub connecting the Golgi and lysosome compartments. Proteomic analysis reveals that CLN3 interacts with several endo-lysosomal trafficking proteins, including the cation-independent mannose 6 phosphate receptor (CI-M6PR), which coordinates the targeting of lysosomal enzymes to lysosomes. CLN3 depletion results in mis-trafficking of CI-M6PR, mis-sorting of lysosomal enzymes, and defective autophagic lysosomal reformation. Conversely, CLN3 overexpression promotes the formation of multiple lysosomal tubules, which are autophagy and CI-M6PR-dependent, generating newly formed proto-lysosomes. Together, our findings reveal that CLN3 functions as a link between the M6P-dependent trafficking of lysosomal enzymes and lysosomal reformation pathway, explaining the global impairment of lysosomal function in Batten disease.


Assuntos
Glicoproteínas de Membrana , Lipofuscinoses Ceroides Neuronais , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/metabolismo , Receptor IGF Tipo 2/genética , Receptor IGF Tipo 2/metabolismo , Proteômica , Chaperonas Moleculares/metabolismo , Lisossomos/metabolismo , Hidrolases/metabolismo , Autofagia
7.
Nat Commun ; 14(1): 2775, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188688

RESUMO

Heterozygous mutations in the gene encoding RagD GTPase were shown to cause a novel autosomal dominant condition characterized by kidney tubulopathy and cardiomyopathy. We previously demonstrated that RagD, and its paralogue RagC, mediate a non-canonical mTORC1 signaling pathway that inhibits the activity of TFEB and TFE3, transcription factors of the MiT/TFE family and master regulators of lysosomal biogenesis and autophagy. Here we show that RagD mutations causing kidney tubulopathy and cardiomyopathy are "auto- activating", even in the absence of Folliculin, the GAP responsible for RagC/D activation, and cause constitutive phosphorylation of TFEB and TFE3 by mTORC1, without affecting the phosphorylation of "canonical" mTORC1 substrates, such as S6K. By using HeLa and HK-2 cell lines, human induced pluripotent stem cell-derived cardiomyocytes and patient-derived primary fibroblasts, we show that RRAGD auto-activating mutations lead to inhibition of TFEB and TFE3 nuclear translocation and transcriptional activity, which impairs the response to lysosomal and mitochondrial injury. These data suggest that inhibition of MiT/TFE factors plays a key role in kidney tubulopathy and cardiomyopathy syndrome.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Células-Tronco Pluripotentes Induzidas , Humanos , Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Células HeLa , Células-Tronco Pluripotentes Induzidas/metabolismo , Rim/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Mutação
8.
EMBO Mol Med ; 15(3): e14837, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36789546

RESUMO

Multiple sulfatase deficiency (MSD, MIM #272200) results from pathogenic variants in the SUMF1 gene that impair proper function of the formylglycine-generating enzyme (FGE). FGE is essential for the posttranslational activation of cellular sulfatases. MSD patients display reduced or absent sulfatase activities and, as a result, clinical signs of single sulfatase disorders in a unique combination. Up to date therapeutic options for MSD are limited and mostly palliative. We performed a screen of FDA-approved drugs using immortalized MSD patient fibroblasts. Recovery of arylsulfatase A activity served as the primary readout. Subsequent analysis confirmed that treatment of primary MSD fibroblasts with tazarotene and bexarotene, two retinoids, led to a correction of MSD pathophysiology. Upon treatment, sulfatase activities increased in a dose- and time-dependent manner, reduced glycosaminoglycan content decreased and lysosomal position and size normalized. Treatment of MSD patient derived induced pluripotent stem cells (iPSC) differentiated into neuronal progenitor cells (NPC) resulted in a positive treatment response. Tazarotene and bexarotene act to ultimately increase the stability of FGE variants. The results lay the basis for future research on the development of a first therapeutic option for MSD patients.


Assuntos
Doença da Deficiência de Múltiplas Sulfatases , Humanos , Doença da Deficiência de Múltiplas Sulfatases/diagnóstico , Doença da Deficiência de Múltiplas Sulfatases/genética , Doença da Deficiência de Múltiplas Sulfatases/patologia , Bexaroteno , Avaliação Pré-Clínica de Medicamentos , Sulfatases/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre
9.
J Biol Chem ; 286(7): 5647-56, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21148308

RESUMO

LPS is an efficient sensitizer of the neutrophil exocytic response to a second stimulus. Although neutrophil exocytosis in response to pathogen-derived molecules plays an important role in the innate immune response to infections, the molecular mechanism underlying LPS-dependent regulation of neutrophil exocytosis is currently unknown. The small GTPase Rab27a and its effector Munc13-4 regulate exocytosis in hematopoietic cells. Whether Rab27a and Munc13-4 modulate discrete steps or the same steps during exocytosis also remains unknown. Here, using Munc13-4- and Rab27a-deficient neutrophils, we analyzed the mechanism of lipopolysaccharide-dependent vesicular priming to amplify exocytosis of azurophilic granules. We found that both Munc13-4 and Rab27a are necessary to mediate LPS-dependent priming of exocytosis. However, we show that LPS-induced mobilization of a small population of readily releasable vesicles is a Munc13-4-dependent but Rab27a-independent process. LPS-induced priming regulation could not be fully explained by secretory organelle maturation as the redistribution of the secretory proteins Rab27a or Munc13-4 in response to LPS treatment was minimal. Using total internal reflection fluorescence microscopy and a novel mouse model expressing EGFP-Rab27a under the endogenous Rab27a promoter but lacking Munc13-4, we demonstrate that Munc13-4 is essential for the mechanism of LPS-dependent exocytosis in neutrophils and unraveled a novel mechanism of vesicular dynamics in which Munc13-4 restricts motility of Rab27a-expressing vesicles to facilitate lipopolysaccharide-induced priming of exocytosis.


Assuntos
Exocitose/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Proteínas de Membrana/metabolismo , Neutrófilos/metabolismo , Vesículas Secretórias/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Exocitose/fisiologia , Regulação da Expressão Gênica/fisiologia , Proteínas de Membrana/genética , Camundongos , Camundongos Mutantes , Neutrófilos/ultraestrutura , Vesículas Secretórias/genética , Vesículas Secretórias/ultraestrutura , Proteínas rab de Ligação ao GTP/genética , Proteínas rab27 de Ligação ao GTP
10.
Nat Commun ; 13(1): 5529, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36130971

RESUMO

Dysregulated secretion in neutrophil leukocytes associates with human inflammatory disease. The exocytosis response to triggering stimuli is sequential; gelatinase granules modulate the initiation of the innate immune response, followed by the release of pro-inflammatory azurophilic granules, requiring stronger stimulation. Exocytosis requires actin depolymerization which is actively counteracted under non-stimulatory conditions. Here we show that the actin nucleator, WASH, is necessary to maintain azurophilic granules in their refractory state by granule actin entrapment and interference with the Rab27a-JFC1 exocytic machinery. On the contrary, gelatinase granules of WASH-deficient neutrophil leukocytes are characterized by decreased Rac1, shortened granule-associated actin comets and impaired exocytosis. Rac1 activation restores exocytosis of these granules. In vivo, WASH deficiency induces exacerbated azurophilic granule exocytosis, inflammation, and decreased survival. WASH deficiency thus differentially impacts neutrophil granule subtypes, impairing exocytosis of granules that mediate the initiation of the neutrophil innate response while exacerbating pro-inflammatory granule secretion.


Assuntos
Actinas , Neutrófilos , Grânulos Citoplasmáticos , Exocitose , Gelatinases , Humanos , Inflamação , Proteínas dos Microfilamentos
11.
J Biol Chem ; 285(22): 16951-7, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20308062

RESUMO

The Arp2/3 complex is essential for actin filament nucleation in a variety of cellular processes. The activation of the Arp2/3 complex is mediated by nucleation-promoting factors, such as the Wiskott-Aldrich syndrome family proteins, which share a WCA (WH2 domain, central region, acidic region) catalytic module at the C-terminal region, required for Arp2/3 activation, but diverge at the N-terminal region, required for binding to specific activators. Here, we report the characterization of WASH, a new member of the WAS family that has nucleation-promoting factor activity and recently has been demonstrated to play a role in endosomal sorting. We found that overexpression of the WASH-WCA domain induced disruption of the actin cytoskeleton, whereas overexpression of full-length WASH in mammalian cells did not affect stress fiber organization. Furthermore, our analysis has revealed that nerve growth factor treatment of PC12 cells overexpressing full-length WASH leads to disruption of the actin cytoskeleton. We have also found that WASH interacts through its N-terminal region with BLOS2, a centrosomal protein belonging to the BLOC-1 complex that functions as a scaffolding factor in the biogenesis of lysosome-related organelles. In addition to BLOS2, WASH also interacts with centrosomal gamma-tubulin and with pallidin, an additional component of the BLOC-1 complex. Collectively, our data propose that WASH is a bimodular protein in which the C terminus is involved in Arp2/3-mediated actin nucleation, whereas the N-terminal portion is required for its regulation and localization in the cells. Moreover, our data suggest that WASH is also a component of the BLOC-1 complex that is associated with the centrosomes.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Regulação da Expressão Gênica , Lisossomos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas/metabolismo , Tubulina (Proteína)/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Camundongos , Modelos Biológicos , Células PC12 , Ratos
12.
Infect Immun ; 79(9): 3607-18, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21746860

RESUMO

Genetic defects in the Rab27a or Munc13-4 gene lead to immunodeficiencies in humans, characterized by frequent viral and bacterial infections. However, the role of Rab27a and Munc13-4 in the regulation of systemic inflammation initiated by Gram-negative bacterium-derived pathogenic molecules is currently unknown. Using a model of lipopolysaccharide-induced systemic inflammation, we show that Rab27a-deficient (Rab27a(ash/ash)) mice are resistant to lipopolysaccharide (LPS)-induced death, while Munc13-4-deficient (Munc13-4(jinx/jinx)) mice show only moderate protection. Rab27a(ash/ash) but not Munc13-4(jinx/jinx) mice showed significantly decreased tumor necrosis factor alpha (TNF-α) plasma levels after LPS administration. Neutrophil sequestration in lungs from Rab27a(ash/ash) and Munc13-4(jinx/jinx) LPS-treated mice was similar to that observed for wild-type mice. In contrast, Rab27a- but not Munc13-4-deficient mice showed decreased neutrophil infiltration in liver and failed to undergo LPS-induced neutropenia. Decreased liver infiltration in Rab27a(ash/ash) mice was accompanied by lower CD44 but normal CD11a and CD11b expression in neutrophils. Both Rab27a- and Munc13-4-deficient mice showed decreased azurophilic granule secretion in vivo, suggesting that impaired liver infiltration and improved survival in Rab27a(ash/ash) mice is not fully explained by deficient exocytosis of this granule subset. Altogether, our data indicate that Rab27a but not Munc13-4 plays an important role in neutrophil recruitment to liver and LPS-induced death during endotoxemia, thus highlighting a previously unrecognized role for Rab27a in LPS-mediated systemic inflammation.


Assuntos
Inflamação/imunologia , Lipopolissacarídeos/imunologia , Fígado/imunologia , Proteínas de Membrana/fisiologia , Infiltração de Neutrófilos , Proteínas rab de Ligação ao GTP/fisiologia , Animais , Antígeno CD11a/biossíntese , Antígeno CD11b/biossíntese , Moléculas de Adesão Celular/biossíntese , Grânulos Citoplasmáticos/imunologia , Receptores de Hialuronatos/biossíntese , Pulmão/imunologia , Ativação Linfocitária , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutropenia/induzido quimicamente , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/sangue , Proteínas rab de Ligação ao GTP/deficiência , Proteínas rab de Ligação ao GTP/genética , Proteínas rab27 de Ligação ao GTP
13.
Nat Commun ; 12(1): 3495, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108486

RESUMO

Lysosomal storage disorders characterized by altered metabolism of heparan sulfate, including Mucopolysaccharidosis (MPS) III and MPS-II, exhibit lysosomal dysfunctions leading to neurodegeneration and dementia in children. In lysosomal storage disorders, dementia is preceded by severe and therapy-resistant autistic-like symptoms of unknown cause. Using mouse and cellular models of MPS-IIIA, we discovered that autistic-like behaviours are due to increased proliferation of mesencephalic dopamine neurons originating during embryogenesis, which is not due to lysosomal dysfunction, but to altered HS function. Hyperdopaminergia and autistic-like behaviours are corrected by the dopamine D1-like receptor antagonist SCH-23390, providing a potential alternative strategy to the D2-like antagonist haloperidol that has only minimal therapeutic effects in MPS-IIIA. These findings identify embryonic dopaminergic neurodevelopmental defects due to altered function of HS leading to autistic-like behaviours in MPS-II and MPS-IIIA and support evidence showing that altered HS-related gene function is causative of autism.


Assuntos
Transtorno do Espectro Autista/metabolismo , Dopamina/metabolismo , Heparitina Sulfato/metabolismo , Doenças por Armazenamento dos Lisossomos/metabolismo , Animais , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/patologia , Benzazepinas/uso terapêutico , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Antagonistas de Dopamina/uso terapêutico , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Heparitina Sulfato/farmacologia , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico , Doenças por Armazenamento dos Lisossomos/patologia , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/embriologia , Mesencéfalo/patologia , Camundongos , Mucopolissacaridose III/tratamento farmacológico , Mucopolissacaridose III/metabolismo , Mucopolissacaridose III/patologia , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D1/metabolismo
14.
EMBO Mol Med ; 13(10): e13742, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34411438

RESUMO

Batten diseases (BDs) are a group of lysosomal storage disorders characterized by seizure, visual loss, and cognitive and motor deterioration. We discovered increased levels of globotriaosylceramide (Gb3) in cellular and murine models of CLN3 and CLN7 diseases and used fluorescent-conjugated bacterial toxins to label Gb3 to develop a cell-based high content imaging (HCI) screening assay for the repurposing of FDA-approved compounds able to reduce this accumulation within BD cells. We found that tamoxifen reduced the lysosomal accumulation of Gb3 in CLN3 and CLN7 cell models, including neuronal progenitor cells (NPCs) from CLN7 patient-derived induced pluripotent stem cells (iPSC). Here, tamoxifen exerts its action through a mechanism that involves activation of the transcription factor EB (TFEB), a master gene of lysosomal function and autophagy. In vivo administration of tamoxifen to the CLN7Δex2 mouse model reduced the accumulation of Gb3 and SCMAS, decreased neuroinflammation, and improved motor coordination. These data strongly suggest that tamoxifen may be a suitable drug to treat some types of Batten disease.


Assuntos
Lipofuscinoses Ceroides Neuronais , Animais , Reposicionamento de Medicamentos , Humanos , Lisossomos , Glicoproteínas de Membrana/genética , Camundongos , Chaperonas Moleculares/genética , Lipofuscinoses Ceroides Neuronais/tratamento farmacológico , Fenótipo , Tamoxifeno/farmacologia
15.
J Cell Physiol ; 220(2): 410-7, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19365808

RESUMO

NEMO/IKKgamma is the essential regulatory subunit of the IkB Kinase (IKK) complex, required for the activation of Nuclear Factor kB (NF-kB) in many physiological processes such as inflammation, immunity, apoptosis, or development. NEMO works at a converging point of the NF-kB pathway as it interacts with upstream signaling molecules to orchestrate its activation. Here we report on the identification of a novel NEMO-interacting protein, NESCA, an adapter molecule previously shown to be involved in the NGF-pathway via the TrkA receptor. We demonstrated that NESCA and NEMO interact by their N-terminal region. Beside to NEMO, we revealed that NESCA directly associates to the E3 ubiquitin ligase TRAF6, which in turn catalyzes NESCA polyubiquitination. Finally, we demonstrated that NESCA overexpression strongly inhibits TRAF6-mediated polyubiquitination of NEMO. In summary, our results highlight that NESCA represents a novel missing link in the NEMO-mediated NF-kB activation pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Quinase I-kappa B/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular , Humanos , Quinase I-kappa B/genética , Poliubiquitina/metabolismo , Ligação Proteica , Fator 6 Associado a Receptor de TNF/genética , Técnicas do Sistema de Duplo-Híbrido , Ubiquitinação
16.
Nat Commun ; 9(1): 3312, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30120233

RESUMO

During starvation the transcriptional activation of catabolic processes is induced by the nuclear translocation and consequent activation of transcription factor EB (TFEB), a master modulator of autophagy and lysosomal biogenesis. However, how TFEB is inactivated upon nutrient refeeding is currently unknown. Here we show that TFEB subcellular localization is dynamically controlled by its continuous shuttling between the cytosol and the nucleus, with the nuclear export representing a limiting step. TFEB nuclear export is mediated by CRM1 and is modulated by nutrient availability via mTOR-dependent hierarchical multisite phosphorylation of serines S142 and S138, which are localized in proximity of a nuclear export signal (NES). Our data on TFEB nucleo-cytoplasmic shuttling suggest an unpredicted role of mTOR in nuclear export.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Núcleo Celular/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Sequência de Aminoácidos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Citosol/metabolismo , Células HEK293 , Células HeLa , Humanos , Carioferinas , Cinética , Fosforilação , Transporte Proteico , Receptores Citoplasmáticos e Nucleares , Proteína Exportina 1
17.
Gene ; 395(1-2): 86-97, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17408883

RESUMO

Carnitine is a molecule with well-documented pleiotropic functions whose biosynthesis involves four catalytic steps. Here, we report a detailed analysis of the expression and transcriptional control of TMLH gene, which codifies for the first enzyme of carnitine biosynthesis. TMLH maps at the extreme end of Xq28, a chromosomal region of high genomic instability. By 5' and 3' RACE, we identified and mapped two alternative 5' TMLH first exons and seven alternative 3'-splice variants, which are spread over a genomic region of about 250 kb. While the two alternative 5' exons have different expression profiles, all the 3' alternative forms are ubiquitously expressed. Reporter assays revealed that the 3'-UTRs of each TMLH isoform might influence its own expression at post-transcriptional level. In addition, we identified a highly conserved promoter region of TMLH. Functional analysis of this region showed the presence of a CpG island, whose methylation-status could control the level of TMLH transcription. Finally, by mRNA in situ hybridization, we found that TMLH expression is present at E12.5 dpc in the mouse liver, lung and brain, and is then maintained in the postnatal brain with a specific neuronal pattern. Collectively, our data highlight a tight transcriptional and post-transcriptional control of TMLH expression.


Assuntos
Processamento Alternativo , Oxigenases de Função Mista/genética , Regiões Promotoras Genéticas , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Encéfalo/embriologia , Encéfalo/metabolismo , Carnitina/biossíntese , Mapeamento Cromossômico , Cromossomos Humanos X/genética , Ilhas de CpG , Primers do DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Variação Genética , Humanos , Hibridização In Situ , Camundongos , Oxigenases de Função Mista/metabolismo , Dados de Sequência Molecular
18.
BMC Med Genet ; 8: 25, 2007 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-17480217

RESUMO

BACKGROUND: Cognitive impairments are heterogeneous conditions, and it is estimated that 10% may be caused by a defect of mental function genes on the X chromosome. One of those genes is Aristaless related homeobox (ARX) encoding a polyA-rich homeobox transcription factor essential for cerebral patterning and its mutations cause different neurologic disorders. We reported on the clinical and genetic analysis of an Italian family with X-linked mental retardation (XLMR) and intra-familial heterogeneity, and provided insight into its molecular defect. METHODS: We carried out on linkage-candidate gene studies in a new MRX family (MRX87). All coding regions and exon-intron boundaries of ARX gene were analysed by direct sequencing. RESULTS: MRX87 patients had moderate to profound cognition impairment and a combination of minor congenital anomalies. The disease locus, MRX87, was mapped between DXS7104 and DXS1214, placing it in Xp22-p21 interval, a hot spot region for mental handicap. An in frame duplication of 24 bp (ARXdup24) in the second polyAlanine tract (polyA_II) in ARX was identified. CONCLUSION: Our study underlines the role of ARXdup24 as a critical mutational site causing mental retardation linked to Xp22. Phenotypic heterogeneity of MRX87 patients represents a new observation relevant to the functional consequences of polyAlanine expansions enriching the puzzling complexity of ARXdup24-linked diseases.


Assuntos
Cromossomos Humanos X , Duplicação Gênica , Ligação Genética , Proteínas de Homeodomínio/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Peptídeos/genética , Fatores de Transcrição/genética , Primers do DNA , Humanos , Masculino , Mutação , Linhagem , Análise de Sequência de DNA
19.
J Clin Invest ; 127(10): 3717-3729, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-28872463

RESUMO

The mammalian target of rapamycin complex 1 (mTORC1) kinase promotes cell growth by activating biosynthetic pathways and suppressing catabolic pathways, particularly that of macroautophagy. A prerequisite for mTORC1 activation is its translocation to the lysosomal surface. Deregulation of mTORC1 has been associated with the pathogenesis of several diseases, but its role in skeletal disorders is largely unknown. Here, we show that enhanced mTORC1 signaling arrests bone growth in lysosomal storage disorders (LSDs). We found that lysosomal dysfunction induces a constitutive lysosomal association and consequent activation of mTORC1 in chondrocytes, the cells devoted to bone elongation. mTORC1 hyperphosphorylates the protein UV radiation resistance-associated gene (UVRAG), reducing the activity of the associated Beclin 1-Vps34 complex and thereby inhibiting phosphoinositide production. Limiting phosphoinositide production leads to a blockage of the autophagy flux in LSD chondrocytes. As a consequence, LSD chondrocytes fail to properly secrete collagens, the main components of the cartilage extracellular matrix. In mouse models of LSD, normalization of mTORC1 signaling or stimulation of the Beclin 1-Vps34-UVRAG complex rescued the autophagy flux, restored collagen levels in cartilage, and ameliorated the bone phenotype. Taken together, these data unveil a role for mTORC1 and autophagy in the pathogenesis of skeletal disorders and suggest potential therapeutic approaches for the treatment of LSDs.


Assuntos
Autofagia , Desenvolvimento Ósseo , Doenças por Armazenamento dos Lisossomos/metabolismo , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Condrócitos/metabolismo , Condrócitos/patologia , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Complexos Multiproteicos/genética , Fosfatidilinositóis/genética , Fosfatidilinositóis/metabolismo , Fosforilação/genética , Fosforilação/efeitos da radiação , Serina-Treonina Quinases TOR/genética , Raios Ultravioleta
20.
Science ; 356(6343): 1188-1192, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28619945

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) is recruited to the lysosome by Rag guanosine triphosphatases (GTPases) and regulates anabolic pathways in response to nutrients. We found that MiT/TFE transcription factors-master regulators of lysosomal and melanosomal biogenesis and autophagy-control mTORC1 lysosomal recruitment and activity by directly regulating the expression of RagD. In mice, this mechanism mediated adaptation to food availability after starvation and physical exercise and played an important role in cancer growth. Up-regulation of MiT/TFE genes in cells and tissues from patients and murine models of renal cell carcinoma, pancreatic ductal adenocarcinoma, and melanoma triggered RagD-mediated mTORC1 induction, resulting in cell hyperproliferation and cancer growth. Thus, this transcriptional regulatory mechanism enables cellular adaptation to nutrient availability and supports the energy-demanding metabolism of cancer cells.


Assuntos
Retroalimentação Fisiológica/fisiologia , Regulação Neoplásica da Expressão Gênica , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neoplasias/fisiopatologia , Animais , Restrição Calórica , Linhagem Celular Tumoral , Proliferação de Células/genética , Células Cultivadas , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Fígado/enzimologia , Fígado/fisiopatologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/enzimologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA