Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Molecules ; 28(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37375333

RESUMO

Vaccine technology is still facing challenges regarding some infectious diseases, which can be addressed by innovative drug delivery systems. In particular, nanoparticle-based vaccines combined with new types of adjuvants are actively explored as a platform for improving the efficacy and durability of immune protection. Here, biodegradable nanoparticles carrying an antigenic model of HIV were formulated with two combinations of poloxamers, 188/407, presenting or not presenting gelling properties, respectively. The study aimed to determine the influence of poloxamers (as a thermosensitive hydrogel or a liquid solution) on the adaptive immune response in mice. The results showed that poloxamer-based formulations were physically stable and did not induce any toxicity using a mouse dendritic cell line. Then, whole-body biodistribution studies using a fluorescent formulation highlighted that the presence of poloxamers influenced positively the dissemination profile by dragging nanoparticles through the lymphatic system until the draining and distant lymph nodes. The strong induction of specific IgG and germinal centers in distant lymph nodes in presence of poloxamers suggested that such adjuvants are promising components in vaccine development.


Assuntos
Poloxâmero , Vacinas , Poloxâmero/metabolismo , Adjuvantes de Vacinas , Distribuição Tecidual , Antígenos , Linfonodos/metabolismo , Adjuvantes Imunológicos/química , Células Dendríticas
2.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36362224

RESUMO

Among mucosal administration routes for vaccines, the sublingual route has been proven capable of inducing a potent systemic and mucosal immune response. However, the absence of a simple and compliant delivery system and the lack of robust mucosal adjuvants impede the development of sublingual vaccines. Here, we describe a mucoadhesive patch made of a layer-by-layer assembly of polysaccharides, chitosan, and hyaluronic acid. The mucoadhesive patch was covered by adjuvanted nanoparticles carrying viral proteins. We showed that the nanoparticles effectively cross the outer layers of the sublingual mucosa to reach the epithelium. Furthermore, the encapsulated adjuvants, 3M-052 and mifamurtide, targeting toll-like receptor (TLR) 7/8 and nucleotide-binding oligomerization domain-2 (NOD2), respectively, remain fully active after encapsulation into nanoparticles and exhibit a cytokine/chemokine signature similar to the mucosal gold-standard adjuvant, the cholera toxin. However, the particulate adjuvants induced more moderate levels of proinflammatory interleukin (IL)-6 and keratinocyte chemoattractant (KC), suggesting a controlled activation of the innate immune response.


Assuntos
Adjuvantes Imunológicos , Imunidade nas Mucosas , Animais , Camundongos , Administração Sublingual , Adjuvantes Imunológicos/farmacologia , Vacinas de Subunidades Antigênicas , Adjuvantes Farmacêuticos , Mucosa , Camundongos Endogâmicos BALB C
3.
Adv Healthc Mater ; 13(8): e2302713, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38116714

RESUMO

Surfaces with biological functionalities are of great interest for biomaterials, tissue engineering, biophysics, and for controlling biological processes. The layer-by-layer (LbL) assembly is a highly versatile methodology introduced 30 years ago, which consists of assembling complementary polyelectrolytes or biomolecules in a stepwise manner to form thin self-assembled films. In view of its simplicity, compatibility with biological molecules, and adaptability to any kind of supporting material carrier, this technology has undergone major developments over the past decades. Specific applications have emerged in different biomedical fields owing to the possibility to load or immobilize biomolecules with preserved bioactivity, to use an extremely broad range of biomolecules and supporting carriers, and to modify the film's mechanical properties via crosslinking. In this review, the focus is on the recent developments regarding LbL films formed as 2D or 3D objects for applications in drug delivery and tissue engineering. Possible applications in the fields of vaccinology, 3D biomimetic tissue models, as well as bone and cardiovascular tissue engineering are highlighted. In addition, the most recent technological developments in the field of film construction, such as high-content liquid handling or machine learning, which are expected to open new perspectives in the future developments of LbL, are presented.


Assuntos
Nanopartículas em Multicamadas , Engenharia Tecidual , Materiais Biocompatíveis , Sistemas de Liberação de Medicamentos , Polieletrólitos
4.
Biochim Biophys Acta ; 1817(10): 1925-36, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22430089

RESUMO

Human mitochondrial complex I (CI) deficiency is associated with progressive neurological disorders. To better understand the CI pathomechanism, we here studied how deletion of the CI gene NDUFS4 affects cell metabolism. To this end we compared immortalized mouse embryonic fibroblasts (MEFs) derived from wildtype (wt) and whole-body NDUFS4 knockout (KO) mice. Mitochondria from KO cells lacked the NDUFS4 protein and mitoplasts displayed virtually no CI activity, moderately reduced CII, CIII and CIV activities and normal citrate synthase and CV (F(o)F(1)-ATPase) activity. Native electrophoresis of KO cell mitochondrial fractions revealed two distinct CI subcomplexes of ~830kDa (enzymatically inactive) and ~200kDa (active). The level of fully-assembled CII-CV was not affected by NDUFS4 gene deletion. KO cells exhibited a moderately reduced maximal and routine O(2) consumption, which was fully inhibited by acute application of the CI inhibitor rotenone. The aberrant CI assembly and reduced O(2) consumption in KO cells were fully normalized by NDUFS4 gene complementation. Cellular [NAD(+)]/[NADH] ratio, lactate production and mitochondrial tetramethyl rhodamine methyl ester (TMRM) accumulation were slightly increased in KO cells. In contrast, NDUFS4 gene deletion did not detectably alter [NADP(+)]/[NADPH] ratio, cellular glucose consumption, the protein levels of hexokinases (I and II) and phosphorylated pyruvate dehydrogenase (P-PDH), total cellular adenosine triphosphate (ATP) level, free cytosolic [ATP], cell growth rate, and reactive oxygen species (ROS) levels. We conclude that the NDUFS4 subunit is of key importance in CI stabilization and that, due to the metabolic properties of the immortalized MEFs, NDUFS4 gene deletion has only modest effects at the live cell level. This article is part of a special issue entitled: 17th European Bioenergetics Conference (EBEC 2012).


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Embrião de Mamíferos/enzimologia , Fibroblastos/enzimologia , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular Transformada , Complexo I de Transporte de Elétrons/genética , Embrião de Mamíferos/citologia , Estabilidade Enzimática/fisiologia , Fibroblastos/citologia , Deleção de Genes , Humanos , Ácido Láctico/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , NAD/genética , NAD/metabolismo , NADP/genética , NADP/metabolismo , Fosforilação/fisiologia , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Complexo Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/metabolismo
5.
Adv Funct Mater ; 23(7): 3432-3442, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-25100929

RESUMO

In vivo, cells are sensitive to the stiffness of their micro-environment and especially to the spatial organization of the stiffness. In vitro studies of this phenomenon can help to better understand the mechanisms of the cell response to spatial variations of the matrix stiffness. In this work, we design polelyelectrolyte multilayer films made of poly(L-lysine) and a photo-reactive hyaluronan derivative. These films can be photo-crosslinked through a photomask to create spatial patterns of rigidity. Quartz substrates incorporating a chromium mask are prepared to expose selectively the film to UV light (in a physiological buffer), without any direct contact between the photomask and the soft film. We show that these micropatterns are chemically homogeneous and flat, without any preferential adsorption of adhesive proteins. Three groups of pattern geometries differing by their shape (circles or lines), size (form 2 to 100 µm) or interspacing distance between the motifs are used to study the adhesion and spatial organization of myoblast cells. On large circular micropatterns, the cells form large assemblies that are confined to the stiffest parts. Conversely, when the size of the rigidity patterns is subcellular, the cells respond by forming protrusions. Finally, on linear micropatterns of rigidity, myoblasts align and their nuclei drastically elongate in specific conditions. These results pave the way for the study of the different steps of myoblast fusion in response to matrix rigidity in well-defined geometrical conditions.

6.
Biomacromolecules ; 14(2): 520-8, 2013 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-23289403

RESUMO

Photo-cross-linkable polyelectrolyte films, whose nanomechanical properties can be varied under UV light illumination, were prepared from poly(l-lysine) (PLL) and a hyaluronan derivative modified with photoreactive vinylbenzyl groups (HAVB). The adhesion and the growth of two model bacteria, namely Escherichia coli and Lactococcus lactis , were studied on non-cross-linked and cross-linked films to investigate how the film stiffness influences the bacterial behavior. While the Gram positive L. lactis was shown to grow slowly on both films, independently of their rigidity, the Gram negative E. coli exhibited a more rapid growth on non-cross-linked softer films compared to the stiffer ones. Experiments performed on photopatterned films showing both soft and stiff regions, confirmed a faster development of E. coli colonies on softer regions. Interestingly, this behavior is opposite to the one reported before for mammalian cells. Therefore, the photo-cross-linked (PLL/HAVB) films are interesting coatings for tissue engineering since they promote the growth of mammalian cells while limiting the bacterial colonization.


Assuntos
Aderência Bacteriana , Escherichia coli/crescimento & desenvolvimento , Lactococcus lactis/crescimento & desenvolvimento , Polímeros/química , Reagentes de Ligações Cruzadas , Eletrólitos/química , Escherichia coli/metabolismo , Ácido Hialurônico/química , Lactococcus lactis/metabolismo , Polilisina/química , Polímeros/metabolismo
7.
Biomacromolecules ; 14(5): 1653-60, 2013 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-23590116

RESUMO

Free-standing films have increasing applications in the biomedical field as drug delivery systems for wound healing and tissue engineering. Here, we prepared free-standing membranes by the layer-by-layer assembly of chitosan and alginate, two widely used biomaterials. Our aim was to produce a thick membrane and to study the permeation of model drugs and the adhesion of muscle cells. We first defined the optimal growth conditions in terms of pH and alginate concentration. The membranes could be easily detached from polystyrene or polypropylene substrate without any postprocessing step. The dry thickness was varied over a large range from 4 to 35 µm. A 2-fold swelling was observed by confocal microscopy when they were immersed in PBS. In addition, we quantified the permeation of model drugs (fluorescent dextrans) through the free-standing membrane, which depended on the dextran molecular weight. Finally, we showed that myoblast cells exhibited a preferential adhesion on the alginate-ending membrane as compared to the chitosan-ending membrane or to the substrate side.


Assuntos
Alginatos/química , Quitosana/química , Eletrólitos/química , Membranas Artificiais , Mioblastos/efeitos dos fármacos , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Dextranos , Corantes Fluorescentes , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Concentração de Íons de Hidrogênio , Camundongos , Peso Molecular , Mioblastos/citologia , Permeabilidade , Polipropilenos , Poliestirenos , Alicerces Teciduais , Molhabilidade
8.
J Thromb Haemost ; 21(11): 3117-3123, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37633640

RESUMO

BACKGROUND: Hemophilia B (HB) is a bleeding disorder characterized by coagulation factor (F) IX (FIX) deficiency. The current standard-of-care for severe HB is prophylaxis with long-term repetitive intravenous (i.v.) infusions of recombinant FIX (rFIX) with standard half-life or extended half-life. Unmet needs remain regarding the development of non-invasive administration routes for coagulation factors. The aim of this study was to evaluate the effectiveness of intranasal delivery (IND) of rFIX and rFIX fused to Fc fragment (rFIX-Fc) in mice. METHODS: Drops of rFIX and rFIX-Fc were deposited in the nostrils of wild-type, FcRn knock-out, FcRn humanized, and FIX knock-out mice. rFIX mucosal uptake was evaluated by measuring plasma FIX antigen and FIX activity (FIX:C) levels, and by performing histologic analysis of the nasal mucosa following IND. RESULTS: After IND, both rFIX and rFIX-Fc were equally delivered to the blood compartment, irrespective of the mouse strain studied, mostly through a passive mechanism of transportation across the mucosal barrier, independent of FcRn receptor. Both plasma FIX antigen and FIX:C activity levels increased following IND in FIX knock-out mice. CONCLUSION: This proof-of-concept study describes evidence supporting the nasal route as an alternative to FIX i.v. infusion for the treatment of HB.


Assuntos
Hemofilia A , Hemofilia B , Camundongos , Animais , Fator IX/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Hemofilia B/tratamento farmacológico , Hemofilia B/genética , Camundongos Knockout , Hemofilia A/tratamento farmacológico , Proteínas Recombinantes/uso terapêutico
9.
Pharmaceutics ; 15(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36986871

RESUMO

mRNA-based vaccines have made a leap forward since the SARS-CoV-2 pandemic and are currently used to develop anti-infectious therapies. If the selection of a delivery system and an optimized mRNA sequence are two key factors to reach in vivo efficacy, the optimal administration route for those vaccines remains unclear. We investigated the influence of lipid components and immunization route regarding the intensity and quality of humoral immune responses in mice. The immunogenicity of HIV-p55Gag encoded mRNA encapsulated into D-Lin-MC3-DMA or GenVoy-ionizable lipid-based LNPs was compared after intramuscular or subcutaneous routes. Three sequential mRNA vaccines were administrated followed by a heterologous boost composed of p24-HIV protein antigen. Despite equivalent IgG kinetic profiles of general humoral responses, IgG1/IgG2a ratio analysis showed a Th2/Th1 balance toward a Th1-biased cellular immune response when both LNPs were administrated via the intramuscular route. Surprisingly, a Th2-biased antibody immunity was observed when DLin-containing vaccine was injected subcutaneously. A protein-based vaccine boost appeared to reverse this balance to a cellular-biased response correlated to an increase in antibody avidity. Our finding suggests that the intrinsic adjuvant effect of ionizable lipids appears to be dependent on the delivery route used, which could be relevant to reach potent and long-lasting immunity after mRNA-based immunization.

10.
Pharmaceutics ; 14(6)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35745869

RESUMO

Polymeric and/or lipid platforms are promising tools for nucleic acid delivery into cells. We previously reported a lipid-polymer nanocarrier, named LipoParticles, consisting of polylactic acid nanoparticles surrounded by cationic lipids, and allowing the addition of mRNA and cationic LAH4-1 peptide at their surface. Although this mRNA platform has shown promising results in vitro in terms of mRNA delivery and translation, the bulk method used to prepare LipoParticles relies on a multistep and time-consuming procedure. Here, we developed an automated process using a microfluidic system to prepare LipoParticles, and we compared it to the bulk method in terms of morphology, physicochemical properties, and ability to vectorize and deliver mRNA in vitro. LipoParticles prepared by microfluidic presented a smaller size and more regular spherical shape than bulk method ones. In addition, we showed that the total lipid content in LipoParticles was dependent on the method of preparation, influencing their ability to complex mRNA. LipoParticles decorated with two mRNA/LAHA-L1 ratios (1/20, 1/5) could efficiently transfect mouse DC2.4 cells except for the automated 1/5 assay. Moreover, the 1/5 mRNA/LAHA-L1 ratio drastically reduced cell toxicity observed in 1/20 ratio assays. Altogether, this study showed that homogeneous LipoParticles can be produced by microfluidics, which represents a promising platform to transport functional mRNA into cells.

11.
Biochim Biophys Acta ; 1797(6-7): 678-97, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20096261

RESUMO

The aim of this review is to analyze the results of experimental research of mechanisms of regulation of mitochondrial respiration in cardiac and skeletal muscle cells in vivo obtained by using the permeabilized cell technique. Such an analysis in the framework of Molecular Systems Bioenergetics shows that the mechanisms of regulation of energy fluxes depend on the structural organization of the cells and interaction of mitochondria with cytoskeletal elements. Two types of cells of cardiac phenotype with very different structures were analyzed: adult cardiomyocytes and continuously dividing cancerous HL-1 cells. In cardiomyocytes mitochondria are arranged very regularly, and show rapid configuration changes of inner membrane but no fusion or fission, diffusion of ADP and ATP is restricted mostly at the level of mitochondrial outer membrane due to an interaction of heterodimeric tubulin with voltage dependent anion channel, VDAC. VDAC with associated tubulin forms a supercomplex, Mitochondrial Interactosome, with mitochondrial creatine kinase, MtCK, which is structurally and functionally coupled to ATP synthasome. Due to selectively limited permeability of VDAC for adenine nucleotides, mitochondrial respiration rate depends almost linearly upon the changes of cytoplasmic ADP concentration in their physiological range. Functional coupling of MtCK with ATP synthasome amplifies this signal by recycling adenine nucleotides in mitochondria coupled to effective phosphocreatine synthesis. In cancerous HL-1 cells this complex is significantly modified: tubulin is replaced by hexokinase and MtCK is lacking, resulting in direct utilization of mitochondrial ATP for glycolytic lactate production and in this way contributing in the mechanism of the Warburg effect. Systemic analysis of changes in the integrated system of energy metabolism is also helpful for better understanding of pathogenesis of many other diseases.


Assuntos
Mitocôndrias/metabolismo , Nucleotídeos de Adenina/metabolismo , Animais , Respiração Celular , Creatina Quinase Mitocondrial/metabolismo , Citoesqueleto/metabolismo , Metabolismo Energético , Retroalimentação Fisiológica , Humanos , Cinética , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Musculares/metabolismo , Modelos Biológicos , Fibras Musculares Esqueléticas/metabolismo , Miócitos Cardíacos/metabolismo , Fosfocreatina/metabolismo , Tubulina (Proteína)/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo
12.
Proc Natl Acad Sci U S A ; 105(48): 18746-51, 2008 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-19033201

RESUMO

Regulation of mitochondrial outer membrane (MOM) permeability has dual importance: in normal metabolite and energy exchange between mitochondria and cytoplasm and thus in control of respiration, and in apoptosis by release of apoptogenic factors into the cytosol. However, the mechanism of this regulation, dependent on the voltage-dependent anion channel (VDAC), the major channel of MOM, remains controversial. A long-standing puzzle is that in permeabilized cells, adenine nucleotide translocase (ANT) is less accessible to cytosolic ADP than in isolated mitochondria. We solve this puzzle by finding a missing player in the regulation of MOM permeability: the cytoskeletal protein tubulin. We show that nanomolar concentrations of dimeric tubulin induce voltage-sensitive reversible closure of VDAC reconstituted into planar phospholipid membranes. Tubulin strikingly increases VDAC voltage sensitivity and at physiological salt conditions could induce VDAC closure at <10 mV transmembrane potentials. Experiments with isolated mitochondria confirm these findings. Tubulin added to isolated mitochondria decreases ADP availability to ANT, partially restoring the low MOM permeability (high apparent K(m) for ADP) found in permeabilized cells. Our findings suggest a previously unknown mechanism of regulation of mitochondrial energetics, governed by VDAC and tubulin at the mitochondria-cytosol interface. This tubulin-VDAC interaction requires tubulin anionic C-terminal tail (CTT) peptides. The significance of this interaction may be reflected in the evolutionary conservation of length and anionic charge in CTT throughout eukaryotes, despite wide changes in the exact sequence. Additionally, tubulins that have lost significant length or anionic character are only found in cells that do not have mitochondria.


Assuntos
Respiração Celular/fisiologia , Mitocôndrias/metabolismo , Tubulina (Proteína)/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , Sequência de Aminoácidos , Animais , Eletrofisiologia , Evolução Molecular , Humanos , Ativação do Canal Iônico , Bicamadas Lipídicas/química , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação Oxidativa , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Ratos , Alinhamento de Sequência , Tubulina (Proteína)/química , Tubulina (Proteína)/genética , Canais de Ânion Dependentes de Voltagem/genética
13.
Pharmaceutics ; 13(5)2021 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-34065660

RESUMO

Respiratory viral infections have been a leading cause of morbidity and mortality worldwide. Despite massive advancements in the virology field, no specific treatment exists for most respiratory viral infections. Approved therapies against respiratory viruses rely almost exclusively on synthetic drugs that have potential side effects, restricting their use. This review aims to present natural marine sulfated polysaccharides possessing promising antiviral activity against respiratory viruses that could be a safe alternative to synthetic broad-spectrum antiviral drugs. The antiviral properties of marine sulfated polysaccharides are presented according to their mechanism of action on different types and strains of respiratory viruses, and the potential limits of their use are discussed.

14.
Acta Biomater ; 128: 222-235, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33878475

RESUMO

The sublingual mucosa is an appealing route for drug administration. However, in the context of increased use of therapeutic proteins, development of protein delivery systems that will protect the protein bioactivity is needed. As proteins are fragile and complex molecules, current sublingual formulations of proteins are in liquid dosage. Yet, protein dilution and short residence time at the sublingual mucosa are the main barriers for the control of the dose that is delivered. In this work, a simple delivery scaffold based on the assembly of two polysaccharides, chitosan and hyaluronic acid, is presented. The natural polymers were assembled by the Layer-by-Layer methodology to produce a mucoadhesive and oro-dispersible freestanding membrane, shown to be innocuous for epithelial human cells. The functionalization of the membrane with proteins led to the production of a bioactive patch with efficient loading and release of proteins, and suitable mechanical properties for manipulation. Sublingual administration of the patch in mouse evidenced the absence of inflammation and an extended time of contact between the model protein ovalbumin and the mucosa compared to liquid formulation. The delivery of fluorescent ovalbumin in mouse sublingual mucosa demonstrated the penetration of the protein in the epithelium 10 min after the patch administration. Moreover, a migration assay with a chemokine incorporated into the patch showed no decrease in bioactivity of the loaded protein after enzymatic release. This study therefore provides a promising strategy to develop a sublingual protein delivery system. STATEMENT OF SIGNIFICANCE: Although the oral route is largely used for drug delivery, it has limitations for the delivery of proteins that can be degraded by pH or gastric enzymes. The sublingual route therefore appears as an interesting approach for protein administration. In this work, a simple delivery scaffold is presented based on the assembly of two polysaccharides by the Layer-by-Layer methodology to produce a mucoadhesive patch. The produced patch allowed efficient loading and release of proteins, as well as protection of their bioactivity. An extended time of contact between the protein and the mucosa compared to liquid formulation was highlighted in mouse model. This study provides a promising strategy to develop a sublingual protein delivery system.


Assuntos
Mucosa Bucal , Polímeros , Administração Sublingual , Animais , Sistemas de Liberação de Medicamentos , Camundongos , Proteínas
15.
Biochim Biophys Acta ; 1787(9): 1089-105, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19362066

RESUMO

The main focus of this investigation is steady state kinetics of regulation of mitochondrial respiration in permeabilized cardiomyocytes in situ. Complete kinetic analysis of the regulation of respiration by mitochondrial creatine kinase was performed in the presence of pyruvate kinase and phosphoenolpyruvate to simulate interaction of mitochondria with glycolytic enzymes. Such a system analysis revealed striking differences in kinetic behaviour of the MtCK-activated mitochondrial respiration in situ and in vitro. Apparent dissociation constants of MgATP from its binary and ternary complexes with MtCK, Kia and Ka (1.94+/-0.86 mM and 2.04+/-0.14 mM, correspondingly) were increased by several orders of magnitude in situ in comparison with same constants in vitro (0.44+/-0.08 mM and 0.016+/-0.01 mM, respectively). Apparent dissociation constants of creatine, Kib and Kb (2.12+/-0.21 mM 2.17+/-0.40 Mm, correspondingly) were significantly decreased in situ in comparison with in vitro mitochondria (28+/-7 mM and 5+/-1.2 mM, respectively). Dissociation constant for phosphocreatine was not changed. These data may indicate selective restriction of metabolites' diffusion at the level of mitochondrial outer membrane. It is concluded that mechanisms of the regulation of respiration and energy fluxes in vivo are system level properties which depend on intracellular interactions of mitochondria with cytoskeleton, intracellular MgATPases and cytoplasmic glycolytic system.


Assuntos
Respiração Celular/fisiologia , Creatina Quinase Mitocondrial/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Cardiotônicos/farmacologia , Cromatografia Líquida de Alta Pressão , Creatina/farmacologia , Ativação Enzimática/efeitos dos fármacos , Cinética , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Fosfocreatina/farmacologia , Fosfoenolpiruvato/metabolismo , Piruvato Quinase/metabolismo , Ratos , Ratos Wistar
16.
Mol Cell Biochem ; 337(1-2): 239-49, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19888554

RESUMO

We studied possible connections of tubulin, microtubular system, and microtubular network stabilizing STOP protein with mitochondria in rat and mouse cardiac and skeletal muscles by confocal microscopy and oxygraphy. Intracellular localization and content of tubulin was found to be muscle type-specific, with high amounts in oxidative muscles, and much lower in glycolytic skeletal muscle. STOP protein localization and content in muscle cells was also muscle type-specific. In isolated heart mitochondria, addition of 1 microM tubulin heterodimer increased apparent K(m) for ADP significantly. Dissociation of microtubular system into free tubulin by colchicine treatment only slightly decreased initially high apparent K(m) for ADP in permeabilized cells, and diffusely distributed free tubulin stayed inside the cells, obviously connected to the intracellular structures. To identify the genes that are specific for oxidative muscle, we developed and applied a method of kindred DNA. The results of sequencing and bioinformatic analysis of isolated cDNA pool common for heart and m. soleus showed that in adult mice the beta-tubulin gene is expressed predominantly in oxidative muscle cells. It is concluded that whereas dimeric tubulin may play a significant role in regulation of mitochondrial outer membrane permeability in the cells in vivo, its organization into microtubular network has a minor significance on that process.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitocôndrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Respiração Celular/genética , Respiração Celular/fisiologia , Biblioteca Gênica , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/metabolismo , Fibras Musculares Esqueléticas/ultraestrutura , Miocárdio/metabolismo , Miocárdio/ultraestrutura , Miócitos Cardíacos/metabolismo , Consumo de Oxigênio/genética , Consumo de Oxigênio/fisiologia , Ligação Proteica , Ratos , Ratos Wistar
17.
J Bioenerg Biomembr ; 41(3): 259-75, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19597977

RESUMO

The aim of this study was to measure energy fluxes from mitochondria in isolated permeabilized cardiomyocytes. Respiration of permeabilized cardiomyocytes and mitochondrial membrane potential were measured in presence of MgATP, pyruvate kinase - phosphoenolpyruvate and creatine. ATP and phosphocreatine concentrations in medium surrounding cardiomyocytes were determined. While ATP concentration did not change in time, mitochondria effectively produced phosphocreatine (PCr) with PCr/O(2) ratio equal to 5.68 +/- 0.14. Addition of heterodimeric tubulin to isolated mitochondria was found to increase apparent Km for exogenous ADP from 11 +/- 2 microM to 330 +/- 47 microM, but creatine again decreased it to 23 +/- 6 microM. These results show directly that under physiological conditions the major energy carrier from mitochondria into cytoplasm is PCr, produced by mitochondrial creatine kinase (MtCK), which functional coupling to adenine nucleotide translocase is enhanced by selective limitation of permeability of mitochondrial outer membrane within supercomplex ATP Synthasome-MtCK-VDAC-tubulin, Mitochondrial Interactosome.


Assuntos
Metabolismo Energético/fisiologia , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias Cardíacas/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Respiração Celular/fisiologia , Cromatografia Líquida de Alta Pressão , Creatina Quinase Mitocondrial/metabolismo , Creatinina/metabolismo , Modelos Biológicos , Consumo de Oxigênio/fisiologia , Fosfocreatina/biossíntese , Fosfoenolpiruvato/metabolismo , Piruvato Quinase/metabolismo , Ratos , Tubulina (Proteína)/metabolismo
18.
Int J Mol Sci ; 10(3): 1161-92, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19399243

RESUMO

We live in times of paradigmatic changes for the biological sciences. Reductionism, that for the last six decades has been the philosophical basis of biochemistry and molecular biology, is being displaced by Systems Biology, which favors the study of integrated systems. Historically, Systems Biology - defined as the higher level analysis of complex biological systems - was pioneered by Claude Bernard in physiology, Norbert Wiener with the development of cybernetics, and Erwin Schrödinger in his thermodynamic approach to the living. Systems Biology applies methods inspired by cybernetics, network analysis, and non-equilibrium dynamics of open systems. These developments follow very precisely the dialectical principles of development from thesis to antithesis to synthesis discovered by Hegel. Systems Biology opens new perspectives for studies of the integrated processes of energy metabolism in different cells. These integrated systems acquire new, system-level properties due to interaction of cellular components, such as metabolic compartmentation, channeling and functional coupling mechanisms, which are central for regulation of the energy fluxes. State of the art of these studies in the new area of Molecular System Bioenergetics is analyzed.


Assuntos
Metabolismo Energético , Biologia de Sistemas/história , Ciclo do Ácido Cítrico , História do Século XVIII , História do Século XIX , Mitocôndrias/metabolismo , Modelos Teóricos , Miofibrilas/metabolismo
19.
Biomaterials ; 195: 23-37, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30610991

RESUMO

Messenger RNA-based vaccines have the potential to trigger robust cytotoxic immune responses, which are essential for fighting cancer and infectious diseases like HIV. Dendritic Cells (DCs) are choice targets for mRNA-based vaccine strategies, as they link innate and adaptive immune responses and are major regulators of cytotoxic and humoral adaptive responses. However, efficient delivery of antigen-coding mRNAs into DC cytosol has been highly challenging. In this study, we developed an alternative to lipid-based mRNA delivery systems, using poly(lactic acid) nanoparticles (PLA-NPs) and cationic cell-penetrating peptides as mRNA condensing agent. The formulations are assembled in two steps: (1) formation of a polyplex between mRNAs and amphipathic cationic peptides (RALA, LAH4 or LAH4-L1), and (2) adsorption of polyplexes onto PLA-NPs. LAH4-L1/mRNA polyplexes and PLA-NP/LAH4-L1/mRNA nanocomplexes are taken up by DCs via phagocytosis and clathrin-dependent endocytosis, and induce strong protein expression in DCs in vitro. They modulate DC innate immune response by activating both endosome and cytosolic Pattern Recognition Receptors (PRRs), and induce markers of adaptive responses in primary human DCs in vitro, with prevalent Th1 signature. Thus, LAH4-L1/mRNA and PLA-NP/LAH4-L1/mRNA represent a promising platform for ex vivo treatment and mRNA vaccine development.


Assuntos
Peptídeos Penetradores de Células/química , Células Dendríticas/metabolismo , Nanopartículas/química , Poliésteres/química , Animais , Endocitose/fisiologia , Humanos , Fagocitose/fisiologia , RNA Mensageiro/química , RNA Mensageiro/metabolismo
20.
Trends Biotechnol ; 35(8): 770-784, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28645529

RESUMO

Reconstructing functional skin after a wound remains a challenge due to the complexity of healing. In this regard, biocompatible nanoparticles (NPs) carrying and releasing bioactive drugs in a controlled and sustained manner may significantly improve the efficacy of wound therapies compared with current treatments. Topical administration of drug-loaded NPs allows optimal delivery to the dermis and improves product efficacy. Furthermore, associating NPs with scaffolds represents a new concept of 'dressing'. Experimental in vivo, ex vivo, and in vitro models have been developed in preclinical assays to evaluate the beneficial effects of nanoparticulate dressings. Drug-loaded NPs are promising tools for innovative wound healing treatment, especially with regard to their multifunctional properties.


Assuntos
Bandagens , Portadores de Fármacos , Nanopartículas , Cicatrização/efeitos dos fármacos , Ferimentos e Lesões/terapia , Administração Tópica , Animais , Portadores de Fármacos/química , Portadores de Fármacos/uso terapêutico , Humanos , Nanopartículas/química , Nanopartículas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA