Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(38): e2206805119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095177

RESUMO

Habitat anthropization is a major driver of global biodiversity decline. Although most species are negatively affected, some benefit from anthropogenic habitat modifications by showing intriguing life-history responses. For instance, increased recruitment through higher allocation to reproduction or improved performance during early-life stages could compensate for reduced adult survival, corresponding to "compensatory recruitment". To date, evidence of compensatory recruitment in response to habitat modification is restricted to plants, limiting understanding of its importance as a response to global change. We used the yellow-bellied toad (Bombina variegata), an amphibian occupying a broad range of natural and anthropogenic habitats, as a model species to test for and to quantify compensatory recruitment. Using an exceptional capture-recapture dataset composed of 21,714 individuals from 67 populations across Europe, we showed that adult survival was lower, lifespan was shorter, and actuarial senescence was higher in anthropogenic habitats, especially those affected by intense human activities. Increased recruitment in anthropogenic habitats fully offset reductions in adult survival, with the consequence that population growth rate in both habitat types was similar. Our findings indicate that compensatory recruitment allows toad populations to remain viable in human-dominated habitats and might facilitate the persistence of other animal populations in such environments.


Assuntos
Efeitos Antropogênicos , Anuros , Biodiversidade , Animais , Europa (Continente) , Dinâmica Populacional
2.
Glob Chang Biol ; 30(3): e17180, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38465701

RESUMO

Palearctic water frogs (genus Pelophylax) are an outstanding model in ecology and evolution, being widespread, speciose, either threatened or threatening to other species through biological invasions, and capable of siring hybrid offspring that escape the rules of sexual reproduction. Despite half a century of genetic research and hundreds of publications, the diversity, systematics and biogeography of Pelophylax still remain highly confusing, in no small part due to a lack of correspondence between studies. To provide a comprehensive overview, we gathered >13,000 sequences of barcoding genes from >1700 native and introduced localities and built multigene mitochondrial (~17 kb) and nuclear (~10 kb) phylogenies. We mapped all currently recognized taxa and their phylogeographic lineages (>40) to get a grasp on taxonomic issues, cyto-nuclear discordances, the genetic makeup of hybridogenetic hybrids, and the origins of introduced populations. Competing hypotheses for the molecular calibration were evaluated through plausibility tests, implementing a new approach relying on predictions from the anuran speciation continuum. Based on our timetree, we propose a new biogeographic paradigm for the Palearctic since the Paleogene, notably by attributing a prominent role to the dynamics of the Paratethys, a vast paleo-sea that extended over most of Europe. Furthermore, our results show that distinct marsh frog lineages from Eastern Europe, the Balkans, the Near East, and Central Asia (P. ridibundus ssp.) are naturally capable of inducing hybridogenesis with pool frogs (P. lessonae). We identified 14 alien lineages (mostly of P. ridibundus) over ~20 areas of invasions, especially in Western Europe, with genetic signatures disproportionally pointing to the Balkans and Anatolia as the regions of origins, in line with exporting records of the frog leg industry and the stocks of pet sellers. Pelophylax thus emerges as one of the most invasive amphibians worldwide, and deserves much higher conservation concern than currently given by the authorities fighting biological invasions.


Assuntos
Anuros , Ranidae , Animais , Anuros/genética , Europa (Continente) , Filogenia , Filogeografia
3.
J Anim Ecol ; 93(3): 333-347, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38279640

RESUMO

Actuarial senescence (called 'senescence' hereafter) often shows broad variation at the intraspecific level. Phenotypic plasticity likely plays a central role in among-individual heterogeneity in senescence rate (i.e. the rate of increase in mortality with age), although our knowledge on this subject is still very fragmentary. Polyphenism-the unique sub-type of phenotypic plasticity where several discrete phenotypes are produced by the same genotype-may provide excellent study systems to investigate if and how plasticity affects the rate of senescence in nature. In this study, we investigated whether facultative paedomorphosis influences the rate of senescence in a salamander, Ambystoma mavortium nebulosum. Facultative paedomorphosis, a unique form of polyphenism found in dozens of urodele species worldwide, leads to the production of two discrete, environmentally induced phenotypes: metamorphic and paedomorphic individuals. We leveraged an extensive set of capture-recapture data (8948 individuals, 24 years of monitoring) that were analysed using multistate capture-recapture models and Bayesian age-dependent survival models. Multistate models revealed that paedomorphosis was the most common developmental pathway used by salamanders in our study system. Bayesian age-dependent survival models then showed that paedomorphs have accelerated senescence in both sexes and shorter adult lifespan (in females only) compared to metamorphs. In paedomorphs, senescence rate and adult lifespan also varied among ponds and individuals. Females with good body condition and high lifetime reproductive success had slower senescence and longer lifespan. Late-breeding females also lived longer but showed a senescence rate similar to that of early-breeding females. Moreover, males with good condition had longer lifespan than males with poor body condition, although they had similar senescence rates. In addition, late-breeding males lived longer but, unexpectedly, had higher senescence than early-breeding males. Overall, our work provides one of the few empirical cases suggesting that environmentally cued polyphenism could affect the senescence of a vertebrate in nature, thus providing insights on the ecological and evolutionary consequences of developmental plasticity on ageing.


Assuntos
Ambystoma , Longevidade , Humanos , Masculino , Feminino , Animais , Teorema de Bayes , Urodelos , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA