Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Environ Manage ; 350: 119644, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38000275

RESUMO

Switching from fossil fuels to renewable energy is key to international energy transition efforts and the move toward net zero. For many nations, this requires decommissioning of hundreds of oil and gas infrastructure in the marine environment. Current international, regional and national legislation largely dictates that structures must be completely removed at end-of-life although, increasingly, alternative decommissioning options are being promoted and implemented. Yet, a paucity of real-world case studies describing the impacts of decommissioning on the environment make decision-making with respect to which option(s) might be optimal for meeting international and regional strategic environmental targets challenging. To address this gap, we draw together international expertise and judgment from marine environmental scientists on marine artificial structures as an alternative source of evidence that explores how different decommissioning options might ameliorate pressures that drive environmental status toward (or away) from environmental objectives. Synthesis reveals that for 37 United Nations and Oslo-Paris Commissions (OSPAR) global and regional environmental targets, experts consider repurposing or abandoning individual structures, or abandoning multiple structures across a region, as the options that would most strongly contribute toward targets. This collective view suggests complete removal may not be best for the environment or society. However, different decommissioning options act in different ways and make variable contributions toward environmental targets, such that policy makers and managers would likely need to prioritise some targets over others considering political, social, economic, and ecological contexts. Current policy may not result in optimal outcomes for the environment or society.


Assuntos
Monitoramento Ambiental , Campos de Petróleo e Gás , Energia Renovável , Combustíveis Fósseis
2.
J Environ Manage ; 352: 119897, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38184869

RESUMO

Thousands of artificial ('human-made') structures are present in the marine environment, many at or approaching end-of-life and requiring urgent decisions regarding their decommissioning. No consensus has been reached on which decommissioning option(s) result in optimal environmental and societal outcomes, in part, owing to a paucity of evidence from real-world decommissioning case studies. To address this significant challenge, we asked a worldwide panel of scientists to provide their expert opinion. They were asked to identify and characterise the ecosystem effects of artificial structures in the sea, their causes and consequences, and to identify which, if any, should be retained following decommissioning. Experts considered that most of the pressures driving ecological and societal effects from marine artificial structures (MAS) were of medium severity, occur frequently, and are dependent on spatial scale with local-scale effects of greater magnitude than regional effects. The duration of many effects following decommissioning were considered to be relatively short, in the order of days. Overall, environmental effects of structures were considered marginally undesirable, while societal effects marginally desirable. Experts therefore indicated that any decision to leave MAS in place at end-of-life to be more beneficial to society than the natural environment. However, some individual environmental effects were considered desirable and worthy of retention, especially in certain geographic locations, where structures can support improved trophic linkages, increases in tourism, habitat provision, and population size, and provide stability in population dynamics. The expert analysis consensus that the effects of MAS are both negative and positive for the environment and society, gives no strong support for policy change whether removal or retention is favoured until further empirical evidence is available to justify change to the status quo. The combination of desirable and undesirable effects associated with MAS present a significant challenge for policy- and decision-makers in their justification to implement decommissioning options. Decisions may need to be decided on a case-by-case basis accounting for the trade-off in costs and benefits at a local level.


Assuntos
Ecossistema , Campos de Petróleo e Gás , Humanos , Consenso , Meio Ambiente , Clima
3.
Environ Monit Assess ; 195(1): 40, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36301373

RESUMO

The current study seeks to identify possible anthropogenic and/or natural environmental stressors that may account for the long-term decline of ecosystem health in Lavaca Bay, Texas, USA. The Formosa Plastics Corporation instituted monitoring of an industrial discharge into the bay with 16 fixed point stations and quarterly sampling from 1993 to 2020. Comprehensive measurements included organic and inorganic solutes in surface water, porewater and sediment, sediment content, plankton, nekton, and infaunal benthos. All parameter trends changed over time due to climate, freshwater inflow events, and/or seasonal changes. Biological community structure and sediment changed with distance from the discharge site. Dominance characterized community structure because three to four taxa comprised > 70% of individuals for nekton (trawl and gill net), phytoplankton, zooplankton, and ichthyoplankton samples. Sediment became sandier over time (48 to 75%) and away from the discharge. Surface water and porewater at reference (R) stations and stations near the discharge site had similar hydrographical and biological trends over time, indicating no long-term impact due to the discharge. However, 99.9% of 424,671 measurements of organic contaminants were non-detectable because the methods were insensitive to ambient concentrations. Thus, it is still not known if contaminants play a role in the long-term decline of ecosystem health in Lavaca Bay. Furthermore, only four R stations were sampled and were all 3810 m from the discharge site, so it is possible that trends in R stations do not represent the natural background. Future studies should include more R stations and lower detection limits for contaminants.


Assuntos
Baías , Ecossistema , Humanos , Monitoramento Ambiental , Texas , Água
4.
Environ Sci Technol ; 49(6): 3401-9, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25688581

RESUMO

More than four decades of alkalinity and pH data (late 1960s to 2010) from coastal bays along the northwestern Gulf of Mexico were analyzed for temporal changes across a climatic gradient of decreasing rainfall and freshwater inflow, from northeast to southwest. The majority (16 out of 27) of these bays (including coastal waters) showed a long-term reduction in alkalinity at a rate of 3.0-21.6 µM yr(-1). Twenty-two bays exhibited pH decreases at a rate of 0.0014-0.0180 yr(-1). In contrast, a northernmost coastal bay exhibited increases in both alkalinity and pH. Overall, the two rates showed a significant positive correlation, indicating that most of these bays, especially those at lower latitudes, have been experiencing long-term acidification. The observed alkalinity decrease may be caused by reduced riverine alkalinity export, a result of precipitation decline under drought conditions, and freshwater diversion for human consumption, as well as calcification in these bays. A decrease in alkalinity inventory and accompanying acidification may have negative impacts on shellfish production in these waters. In addition, subsequent reduction in alkalinity export from these bays to the adjacent coastal ocean may also decrease the buffer capacity of the latter against future acidification.


Assuntos
Estuários , Baías , Monitoramento Ambiental/métodos , Água Doce , Golfo do México , Humanos , Concentração de Íons de Hidrogênio , Chuva , Análise Espaço-Temporal
5.
Mar Pollut Bull ; 202: 116343, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626636

RESUMO

The Deepwater Horizon (DWH) blowout and oil spill began on April 20, 2010 in the northern Gulf of Mexico (NGOM) deep sea (1525 m). Previous studies documented an impacted area of deep-sea floor totaling 321 km2 and were based on taxonomy at the macrofauna family level and the meiofauna major taxonomic level. In the present study, finer taxonomic resolution of the meiofauna community was employed, specifically harpacticoid copepod family biodiversity. Severe or moderate impacts to harpacticoid family biodiversity were observed at 35 of 95 sampling stations, covering an estimated area of 2864 km2, 8.9 times greater impacted area than previously reported. Sensitive and tolerant harpacticoid families were observed in the impact zone. The present study greatly expands the understanding of DWH deep-sea impacts in 2010 and demonstrates that the harpacticoid family-level response is the most sensitive indicator (reported to date) of this oil spill pollution event.


Assuntos
Biodiversidade , Copépodes , Monitoramento Ambiental , Poluição por Petróleo , Animais , Golfo do México , Poluentes Químicos da Água/análise
6.
Environ Monit Assess ; 185(7): 5917-35, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23179724

RESUMO

Packery Channel is part of a complex of storm washover channels which, before 1912, have opened intermittently, linking the Laguna Madre and Corpus Christi Bay, Texas with the Gulf of Mexico. On 21 July 2005, with the assistance of Hurricane Emily, Packery Channel was prematurely opened to the Gulf of Mexico, months before construction of a dredged channel was scheduled to be completed. A before-versus-after, control-versus-impact (BACI) design was used to assess the effects of reopening Packery Channel on water quality and estuarine macrofauna in Mollie Beattie Coastal Habitat Community (MBCHC), Corpus Christi Bay. Two deep (approximately 1 m below m.s.l.) and two shallow (approximately 0.2 m below m.s.l.) stations were sampled monthly for physical and biological characteristics at both control and impact sites between November 2003 and March 2009. The opening of Packery Channel created a unique situation where salinities decreased after the channel opening by ameliorating hypersalinity in Laguna Madre rather than increasing salinities as would occur in most estuaries worldwide. Salinity also fluctuated in a diurnal pattern after the opening of Packery Channel. Apart from salinity, Packery Channel has caused little hydrographic change in MBCHC since opening in July 2005. There was little effect on the macrofaunal community composition. There was a greater difference in community composition between deep and shallow stations than between either before and after or control and impact sites. There have been no significant changes in abundance, biomass, or N1 diversity caused by the opening of Packery Channel.


Assuntos
Organismos Aquáticos/crescimento & desenvolvimento , Estuários , Invertebrados/crescimento & desenvolvimento , Água do Mar/química , Animais , Organismos Aquáticos/classificação , Ecossistema , Monitoramento Ambiental , Invertebrados/classificação , Medição de Risco , Salinidade , Texas
7.
Water Res ; 217: 118436, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35447571

RESUMO

As coastal areas become more vulnerable to climatic impacts, the need for understanding estuarine carbon budgets with sufficient spatiotemporal resolution arises. Under various hydrologic extremes ranging from drought to hurricane-induced flooding, a mass balance model was constructed for carbon fluxes and their variabilities in four estuaries along the northwestern Gulf of Mexico (nwGOM) coast over a four-year period (2014-2018). Loading of total organic carbon (TOC) and dissolved inorganic carbon (DIC) to estuaries included riverine discharge and lateral exchange from tidal wetlands. The lateral exchanges of TOC and DIC reached 4.5 ± 5.7 and 8.9 ± 1.4 mol·C·m-2·yr-1, accounting for 86.5% and 62.7% of total TOC and DIC inputs into these estuaries, respectively. A relatively high regional CO2 efflux (4.0 ± 0.7 mol·C·m-2·yr-1) was found, which was two times the average value in North American coastal estuaries reported in the literature. Oceanic export was the major pathway for losses of TOC (5.6 ± 1.7 mol·C·m-2·yr-1, 81.2% of total) and DIC (9.9 ± 2.9 mol·C·m-2·yr-1, 69.7% of total). The carbon budget exhibited high variability in response to hydrologic changes. For example, storm or hurricane induced flooding elevated CO2 efflux by 2-10 times in short periods of time. Flood following a drought also increased lateral TOC exchange (from -3.5 ± 4.7 to 67.8 ± 17.6 mmol·C·m-2·d-1) but decreased lateral DIC exchange (from 28.9 ± 3.5 to -7.1 ± 7.6 mmol·C·m-2·d-1). The large variability of carbon budgets highlights the importance of high-resolution spatiotemporal coverage under different hydrologic conditions, and the importance of carbon contribution from tidal wetlands to coastal carbon cycling.


Assuntos
Carbono , Áreas Alagadas , Carbono/análise , Dióxido de Carbono , Hidrologia
8.
Mar Pollut Bull ; 178: 113621, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35421642

RESUMO

Ten benthic fauna taxa in a polluted marine area adjacent to McMurdo Station, Antarctica were deemed to be potential biomonitors because PCBs, DDTs, PAHs, copper, lead and/or zinc in their tissues were significantly higher than in tissues of taxa living in reference areas (p < 0.05). Concentrations of PCBs and DDT were highest in Trematomus (fish). Total PAH concentrations were highest in Alcyonium antarcticum (soft coral), Isotealia antarctica (anemone) and L. elliptica. Copper and lead concentrations were highest in Laternula elliptica (bivalve) and Flabegraviera mundata (polychaete), and lowest in Trematomus and Parbolasia corrugatus (nemertean). However, copper concentrations were even higher in the asteroids Perknaster fuscus antarcticus, Odontaster validus and Psilaster charcoti. Bioaccumulation factors for different species were highest for PCBs and DDT, and lowest for lead. Bioaccumulation of some contaminants are likely prevalent in benthic taxa at McMurdo Station, but concentrations are usually low relative to human consumption standards.


Assuntos
Bivalves , Perciformes , Bifenilos Policlorados , Animais , Regiões Antárticas , Cobre , DDT , Monitoramento Ambiental , Sedimentos Geológicos , Chumbo , Bifenilos Policlorados/análise
9.
Sci Adv ; 8(9): eabl9155, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35235355

RESUMO

Tropical cyclones drive coastal ecosystem dynamics, and their frequency, intensity, and spatial distribution are predicted to shift with climate change. Patterns of resistance and resilience were synthesized for 4138 ecosystem time series from n = 26 storms occurring between 1985 and 2018 in the Northern Hemisphere to predict how coastal ecosystems will respond to future disturbance regimes. Data were grouped by ecosystems (fresh water, salt water, terrestrial, and wetland) and response categories (biogeochemistry, hydrography, mobile biota, sedentary fauna, and vascular plants). We observed a repeated pattern of trade-offs between resistance and resilience across analyses. These patterns are likely the outcomes of evolutionary adaptation, they conform to disturbance theories, and they indicate that consistent rules may govern ecosystem susceptibility to tropical cyclones.

10.
Sci Total Environ ; 755(Pt 2): 142574, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33069908

RESUMO

Nutrient budgets in semi-arid estuaries, with ephemeral freshwater inflows and limited nutrient sources, are likely incomplete if contributions from submarine groundwater discharge (SGD) are not included. Here, the relative importance of saline/recirculated SGD-derived nutrient fluxes spatiotemporal variability to the overall nutrient budget is quantified for Nueces Bay, Texas, U.S.A., across hydroclimatic conditions ranging from drought to normal, to flood. On average, 67% of the variance in water quality is due to temporal differences while 16% is explained by spatial differences. Principal component analysis (PCA) reveals three principal components: freshwater inflow (PC1 28.8%), saline/recirculated SGD and recycled nitrogen (PC2 15.6%), and total SGD and "new" nitrogen (PC3 11.2%). Total SGD porewater fluxes ranged from 29.9-690.3 mmol∙m-2d-1 for ammonium, 0.21-18.7 mmol∙m-2d-1 for nitrite+nitrate, 3.1-51.3 mmol∙m-2d-1 for phosphate, 57.1-719.7 mmol∙m-2d-1 for silicate, and 95.9-36,838.5 mmol∙m-2d-1 for dissolved organic carbon. Total and saline/recirculated SGD fluxes were on average 150-26,000 and 5.8-466 times, respectively, greater than surface runoff fluxes across all seasons. Nitrogen (N) enrichment in porewater occurs near the agricultural fields because of soil N flushing and percolation to groundwater, which facilitates N-rich groundwater fluxes. There were substantial "new" N inputs from terrestrial groundwater following precipitation while saline/recirculated SGD of recycled N accounts for only <4% of total SGD inputs. The "new" N inputs occur in the river and river mouth during flooding, and near the north shore where topography and hydraulic gradients are steeper during drought. Thus, while significant inputs of N may be associated with atmospheric deposition, or remineralization in the porewater, groundwater is the highest contributor to the nutrient budget in Nueces Bay. This result implies that nutrient management strategies should focus on land-use practices to reduce N contamination of shallow groundwater and subsequent contamination of estuaries.

11.
Sci Total Environ ; 764: 142798, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33077209

RESUMO

Improved waste management at McMurdo Station, Antarctica beginning in the 1980s has been followed by decreases in polycyclic aromatic hydrocarbon (PAH) and metal contamination in the adjacent marine sediments. However, determining the effect of the decreased contamination on marine ecological indicators (macrobenthic fauna) is confounded by concurrent changes in climate cycles and other physical forces. Between 2000 and 2013, there was a decrease in concentrations of some contaminants including mercury, copper, organochlorines, and PAHs in marine sediments adjacent to McMurdo Station. PAH concentrations in Winter Quarters Bay decreased an order of magnitude from 2000/2003 to 2012/2013 and were within an order of magnitude of reference area concentrations by 2013. Macrobenthic communities did not indicate any sign of recovery and have not become more similar to reference communities over this same period of time. Temporal changes in macrobenthic community composition during the study period had higher correlations with climatic and sea ice dynamics than with changes in contaminant concentrations. The Interdecadal Pacific Oscillation climatic index had the highest correlation with macrobenthic community composition. The Antarctic Oscillation climatic index, maximum ice extent and other natural environmental factors also appear to influence macrobenthic community composition. Despite large improvements in environmental management at McMurdo Station, continuing environmental vigilance is necessary before any noticeable improvement in ecological systems is likely to occur. The effects of climate must be considered when determining temporal changes in anthropogenic effects in Antarctica. Maintaining long-term monitoring of both contaminants and ecological indicators is important for determining the localized and global influences of humans on Antarctica, which will have implications for the whole planet.


Assuntos
Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Regiões Antárticas , Ecossistema , Sedimentos Geológicos , Humanos , Metais/análise , Hidrocarbonetos Policíclicos Aromáticos/análise
12.
PLoS One ; 15(6): e0235167, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32603344

RESUMO

The 2010 Deepwater Horizon blowout off the coast of Louisiana caused the largest marine oil spill on record. Samples were collected 2-3 months after the Macondo well was capped to assess damage to macrofauna and meiofauna communities. An earlier analysis of 58 stations demonstrated severe and moderate damage to an area of 148 km2. An additional 58 archived stations have been analyzed to enhance the resolution of that assessment and determine if impacts occurred further afield. Impacts included high levels of total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAH) in the sediment, low diversity, low evenness, and low taxonomic richness of the infauna communities. High nematode to copepod ratios corroborated the severe disturbance of meiofauna communities. Additionally, barium levels near the wellhead were very high because of drilling activities prior to the accident. A principal component analysis (PCA) was used to summarize oil spill impacts at stations near the Macondo well, and the benthic footprint of the DWH oil spill was estimated using Empirical Bayesian Kriging (EBK) interpolation. An area of approximately 263 km2 around the wellhead was affected, which is 78% higher than the original estimate. Particularly severe damages to benthic communities were found in an area of 58 km2, which is 142% higher than the original estimate. The addition of the new stations extended the area of the benthic footprint map to about twice as large as originally thought and improved the resolution of the spatial interpolation. In the future, increasing the spatial extent of sampling should be a top priority for designing assessment studies.


Assuntos
Organismos Aquáticos/crescimento & desenvolvimento , Biodiversidade , Sedimentos Geológicos/química , Poluição por Petróleo/análise , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Golfo do México , Louisiana , Análise de Componente Principal , Análise Espacial
13.
Mar Pollut Bull ; 150: 110656, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31678679

RESUMO

During an oil spill, a marine oil snow sedimentation and flocculent accumulation (MOSSFA) event can transport oil residue to the seafloor. Microcosm experiments were used to test the effects of oil residues on meiofaunal abundance and the nematode:copepod ratio under different oil concentrations and in the presence and absence of marine snow. Total meiofaunal abundance was 1.7 times higher in the presence of snow regardless of oil concentration. The nematode:copepod ratio was 13.9 times lower in the snow treatment regardless of the oil concentration. Copepod abundance was 24.3 times higher in marine snow treatments and 4.3 times higher at the highest oil concentration. Nematode abundance was 1.7 times lower at the highest oil concentration. The result of the experiment was an enrichment effect. The lack of a toxic response in the experiments may be attributable to relatively low oil concentrations, weathering processes, and the absence of chemically dispersed oil.


Assuntos
Copépodes , Monitoramento Ambiental , Nematoides , Poluição por Petróleo , Poluentes Químicos da Água/toxicidade , Animais , Sedimentos Geológicos
14.
Data Brief ; 25: 104178, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31321269

RESUMO

The present article provides water quality data collected from three South Texas Estuaries (Guadalupe, Nueces and Lavaca-Colorado Estuaries) during frequent drought from 2011 to 2014. The data described here are presented in the research article "The relationship between suspended solids and nutrients with variable hydrologic flow regimes" Paudel et al., 2019. Quarterly (i.e. four times a year) surface water quality data presented here were collected from various stations lie along river-estuary mouth to oceanic salinity gradient. Followings are the water quality data provided from Texas estuaries at different river flow regimes: pH, DO, TSS, salinity, chlorophyll-a, secchi disc reading, and nutrients (dissolved nitrogen, dissolved phosphorus and dissolved silicate). Surface inflow was obtained by adding gauged, modeled and return flow.

15.
Mar Pollut Bull ; 141: 164-175, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30955722

RESUMO

Marine Oil Snow Sedimentation and Flocculent Accumulation (MOSSFA) can pose serious threats to the marine benthic ecosystem as it results in a deposition of oil contaminated marine snow on the sediment surface. In a microcosm experiment we investigated the effects of oil in combination with artificial marine snow or kaolin clay on two benthic invertebrate species and benthic meiofauna. The amphipod showed a dose-dependent decrease in survival for both oil-contaminated clay and oil-contaminated marine snow. The gastropod was only affected by the highest concentration of oil-contaminated marine snow and had internal concentrations of PAHs with a similar distribution as oil-contaminated marine snow. Benthic copepods showed higher survival in presence of marine snow. This study revealed that marine snow on the sediment after oil spills affects organisms in a trait-dependent way and that it can be a vector for introducing oil into the food web.


Assuntos
Sedimentos Geológicos/química , Invertebrados/efeitos dos fármacos , Poluição por Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Copépodes/efeitos dos fármacos , Ecossistema , Ecotoxicologia , Floculação , Modelos Teóricos , Hidrocarbonetos Policíclicos Aromáticos/análise , Especificidade da Espécie , Poluentes Químicos da Água/análise
16.
Integr Environ Assess Manag ; 13(2): 342-351, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27144656

RESUMO

In fall 2010, several months after the Deepwater Horizon blowout was capped, zones of moderate and severe impacts to deep-sea, soft-bottom benthos were identified that together extended over an area of 172 km2 . A subset of stations sampled in 2010 was resampled in May and June 2011, 10 to 11 months after the event, to determine whether the identified adverse effects were persisting. The design compared 20 stations from the combined moderate and severe impact zone to 12 stations in the reference zone that were sampled in both years. There were no statistically significant differences in contaminant concentrations between the impact and nonimpact zones from 2010 to 2011, which indicates contaminants persisted after 1 y. Whereas there were some signs of recovery in 2011 (particularly for the meiofauna abundance and diversity), there was evidence of persistent, statistically significant impacts to both macrofauna and meiofauna community structure. Macrofaunal taxa richness and diversity in 2011 were still 22.8% and 35.9% less, respectively, in the entire impact zone than in the surrounding nonimpact area, and meiofaunal richness was 28.5% less in the entire impact zone than in the surrounding area. The persistence of significant biodiversity losses and community structure change nearly 1 y after the wellhead was capped indicates that full recovery had yet to have occurred in 2011. Integr Environ Assess Manag 2017;13:342-351. © 2016 SETAC.


Assuntos
Biodiversidade , Ecossistema , Monitoramento Ambiental , Poluição por Petróleo , Sedimentos Geológicos/química
17.
Mar Environ Res ; 127: 32-40, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28336052

RESUMO

As ecosystem engineers, oysters create and maintain structured habitat and can influence trophodynamics and benthic-pelagic coupling in the surrounding landscape. The physical reef structure and associated biotic parameters can affect the availability of food resources for oysters. Oysters and potential composite food sources - suspended particulate organic matter (SPOM) and surface sediment organic matter (SSOM) - were assessed using a dual stable isotope (δ13C, δ15N) approach at three reef types (natural, restored, and unconsolidated) seasonally for two years to determine if changes in physical and/or biotic parameters affected the relative availability and/or use of food resources by oysters. SPOM was more depleted in 13C (-24.2 ± 0.6‰, mean ± SD) than SSOM (-21.2 ± 0.8‰). SPOM composition is likely dominated by autochthonous phytoplankton production, while SSOM includes trapped phytoplankton and benthic microalgae. SSOM was used by oysters in increasing proportions relative to SPOM over time at all reef types. This temporal trend is likely due to increased oyster biomass over time, promoting enhanced microphytobenthos growth through feedback effects related to oyster biodeposits. Structural differences between reef types observed in this study had no effect on food resource availability and use by oysters, indicating strong bentho-pelagic coupling likely due to shallow depths as well as strong and consistent winds. This study provides insights for restoration of oyster reefs as it highlights that food resources used by oysters remain similar among reef types despite changes in abiotic and biotic parameters among habitats and over time.


Assuntos
Monitoramento Ambiental , Ostreidae/fisiologia , Animais , Biomassa , Isótopos de Carbono/análise , Ecossistema , Cadeia Alimentar , Isótopos de Nitrogênio/análise , Fitoplâncton , Dinâmica Populacional
18.
PLoS One ; 12(6): e0179923, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28640913

RESUMO

The Deepwater Horizon oil spill occurred in spring and summer 2010 in the northern Gulf of Mexico. Research cruises in 2010 (approximately 2-3 months after the well had been capped), 2011, and 2014 were conducted to determine the initial and subsequent effects of the oil spill on deep-sea soft-bottom infauna. A total of 34 stations were sampled from two zones: 20 stations in the "impact" zone versus 14 stations in the "non-impact" zone. Chemical contaminants were significantly different between the two zones. Polycyclic aromatic hydrocarbons averaged 218 ppb in the impact zone compared to 14 ppb in the non-impact zone. Total petroleum hydrocarbons averaged 1166 ppm in the impact zone compared to 102 ppm in the non-impact zone. While there was no difference between zones for meiofauna and macrofauna abundance, community diversity was significantly lower in the impact zone. Meiofauna taxa richness over the three sampling periods averaged 8 taxa/sample in the impact zone, compared to 10 taxa/sample in the non-impact zone; and macrofauna richness averaged 25 taxa/sample in the impact zone compared to 30 taxa/sample in the non-impact zone. Oil originating from the Deepwater Horizon oil spill reached the seafloor and had a persistent negative impact on diversity of soft-bottom, deep-sea benthic communities. While there are signs of recovery for some benthic community variables, full recovery has not yet occurred four years after the spill.


Assuntos
Ecossistema , Poluição por Petróleo/efeitos adversos , Classificação , Sedimentos Geológicos , Golfo do México , Fatores de Tempo
19.
Integr Environ Assess Manag ; 13(5): 840-851, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28121064

RESUMO

Paired sediment contaminant and benthic infaunal data from prior studies following the 2010 Deepwater Horizon (DWH) oil spill in the Gulf of Mexico were analyzed using logistic regression models (LRMs) to derive sediment quality benchmarks for assessing risks of oil-related impacts to the deep-sea benthos. Sediment total polycyclic aromatic hydrocarbon (PAH) and total petroleum hydrocarbon (TPH) concentrations were used as measures of oil exposure. Taxonomic richness (average number of taxa/sample) was selected as the primary benthic response variable. Data are from 37 stations (1300-1700 m water depth) in fine-grained sediments (92%-99% silt-clay) sampled within 200 km of the DWH wellhead (most within 40 km) in 2010 and 32 stations sampled in 2011 (29 of which were common to both years). Results suggest the likelihood of impacts to benthic macrofauna and meiofauna communities is low (<20%) at TPH concentrations of less than 606 mg kg-1 (ppm dry weight) and 700 mg kg-1 respectively, high (>80%) at concentrations greater than 2144 mg kg-1 and 2359 mg kg-1 respectively, and intermediate at concentrations in between. For total PAHs, the probability of impacts is low (<20%) at concentrations of less than 4.0 mg kg-1 (ppm) for both macrofauna and meiofauna, high (>80%) at concentrations greater than 24 mg kg-1 and 25 mg kg-1 for macrofauna and meiofauna, respectively, and intermediate at concentrations in between. Although numerical sediment quality guidelines (SQGs) are available for total PAHs and other chemical contaminants based on bioeffect data for shallower estuarine, marine, and freshwater biota, to our knowledge, none have been developed for measures of total oil (e.g., TPH) or specifically for deep-sea benthic applications. The benchmarks presented herein provide valuable screening tools for evaluating the biological significance of observed oil concentrations in similar deep-sea sediments following future spills and as potential restoration targets to aid in managing recovery. Integr Environ Assess Manag 2017;13:840-851. Published 2017. This article is a US Government work and is in the public domain in the USA.


Assuntos
Monitoramento Ambiental/métodos , Poluição por Petróleo/análise , Poluentes Químicos da Água/análise , Benchmarking , Monitoramento Ambiental/normas , Sedimentos Geológicos/química , Hidrocarbonetos , Petróleo/análise , Poluição por Petróleo/estatística & dados numéricos , Hidrocarbonetos Policíclicos Aromáticos/análise , Água do Mar/química , Poluentes Químicos da Água/normas
20.
Integr Environ Assess Manag ; 12(3): 529-39, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26273802

RESUMO

Florida legislation requires determining and implementing an appropriate range and frequency of freshwater inflows that will sustain a fully functional estuary. Changes in inflow dynamics to the Caloosahatchee Estuary, Florida have altered salinity regimes that, in turn, have altered the ecological integrity of the estuary. The purpose of this current project is to determine how changes in freshwater inflows affect water quality, and in turn, benthic macrofauna, spatially within the Caloosahatchee Estuary and between multiyear wet and dry periods. Thirty-four benthic species were identified as being indicator species for salinity zones, and the estuary was divided into 4 zones based on differences in community structure within the estuary. Community structure had the highest correlations with water quality parameters that were common indicators of freshwater conditions resulting from inflows. A significant relationship between salinity and diversity occurs both spatially and temporally because of increased numbers of marine species as salinities increase. A salinity-based model was used to estimate inflow during wet and dry periods for each of the macrofauna community zones. The approach used here (identifying bioindicators and community zones with corresponding inflow ranges) is generic and will be useful for developing targets for managing inflow in estuaries worldwide. Integr Environ Assess Manag 2016;12:529-539. © 2015 SETAC.


Assuntos
Organismos Aquáticos/fisiologia , Monitoramento Ambiental , Estuários , Água Doce/análise , Invertebrados/fisiologia , Salinidade , Animais , Florida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA