Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 260
Filtrar
1.
J Synchrotron Radiat ; 31(Pt 4): 741-750, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38917021

RESUMO

Transition-metal nitrogen-doped carbons (TM-N-C) are emerging as a highly promising catalyst class for several important electrocatalytic processes, including the electrocatalytic CO2 reduction reaction (CO2RR). The unique local environment around the singly dispersed metal site in TM-N-C catalysts is likely to be responsible for their catalytic properties, which differ significantly from those of bulk or nanostructured catalysts. However, the identification of the actual working structure of the main active units in TM-N-C remains a challenging task due to the fluctional, dynamic nature of these catalysts, and scarcity of experimental techniques that could probe the structure of these materials under realistic working conditions. This issue is addressed in this work and the local atomistic and electronic structure of the metal site in a Co-N-C catalyst for CO2RR is investigated by employing time-resolved operando X-ray absorption spectroscopy (XAS) combined with advanced data analysis techniques. This multi-step approach, based on principal component analysis, spectral decomposition and supervised machine learning methods, allows the contributions of several co-existing species in the working Co-N-C catalysts to be decoupled, and their XAS spectra deciphered, paving the way for understanding the CO2RR mechanisms in the Co-N-C catalysts, and further optimization of this class of electrocatalytic systems.

2.
Reproduction ; 167(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38019967

RESUMO

In brief: Mitochondrial uncoupling proteins (UCPs) regulate mitochondrial activity and reactive oxygen species production through the transport of protons and metabolites. This study identified the expression of UCPs in human Sertoli cells, which proved to be modulators of their mitochondrial activity. Abstract: Mitochondrial uncoupling proteins (UCPs) are mitochondrial channels responsible for the transport of protons and small molecular substrates across the inner mitochondrial membrane. Altered UCP expression or function is commonly associated with mitochondrial dysfunction and increased oxidative stress, which are both known causes of male infertility. However, UCP expression and function in the human testis remain to be characterized. This study aimed to assess the UCP homologs (UCP1-6) expression and function in primary cultures of human Sertoli cells (hSCs). We identified the mRNA expression of all UCP homologs (UCP1-6) and protein expression of UCP1, UCP2, and UCP3 in hSCs. UCP inhibition by genipin for 24 h decreased hSCs proliferation without causing cytotoxicity (n = 6). Surprisingly, the prolonged UCP inhibition for 24 h decreased mitochondrial membrane potential, oxygen consumption rate (OCR), and endogenous reactive oxygen species (ROS) production. The metabolism of hSCs was also affected as UCP inhibition shifted their metabolism toward an increased pyruvate consumption. Taken together, these findings demonstrate that UCPs play a role as regulators of the mitochondrial function in hSCs, emphasizing their potential as targets in the study of male (in)fertility.


Assuntos
Canais Iônicos , Prótons , Humanos , Masculino , Proteínas de Desacoplamento Mitocondrial , Canais Iônicos/genética , Canais Iônicos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células de Sertoli/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Testículo/metabolismo
3.
Org Biomol Chem ; 22(15): 2902-2915, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38526533

RESUMO

2-Azabicyclo[3.2.1]octanes are nitrogen containing heterocycles with significant potential in the field of drug discovery. This core has been applied as key synthetic intermediate in several total synthesis, while their unique structure can make them a challenging scaffold to acquire. This Minireview summarizes the synthetic approaches to access this bicyclic architecture and highlights its presence in the total synthesis of several target molecules.

4.
J Periodontal Res ; 59(2): 336-345, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38041212

RESUMO

OBJECTIVE: To investigate the effects of miR-221 and miR-222 and high glucose on human periodontal ligament (PL) cells morphology, cytoskeleton, adhesion, and migration. BACKGROUND: Chronic hyperglycemia is common in uncontrolled diabetes mellitus (DM) and plays a central role in long-term DM complications, such as impaired periodontal healing. We have previously shown that high glucose increases apoptosis of human PL cells by inhibiting miR-221 and miR-222 and consequently augmenting their target caspase-3. However, other effects of miR-221/222 downregulation on PL cells are still unknown. METHODS: Cells from young humans' premolar teeth were cultured for 7 days under 5 or 30 mM glucose. Directional and spontaneous migration on fibronectin were studied using transwell and time-lapse assays, respectively. F-actin staining was employed to study cell morphology and the actin cytoskeleton. MiR-221 and miR-222 were inhibited using antagomiRs, and their expressions were evaluated by real-time RT-PCR. RESULTS: High glucose inhibited PL cells early adhesion, spreading, and migration on fibronectin. Cells exposed to high glucose showed reduced polarization, velocity, and directionality. They formed several simultaneous unstable and short-lived protrusions, suggesting impairment of adhesion maturation. MiR-221 and miR-222 inhibition also reduced migration, decreasing cell directionality but not significantly cell velocity. After miR-221 and miR-222 downregulation cells showed morphological resemblance with cells exposed to high glucose. CONCLUSION: High glucose impairs human PL cells migration potentially through a mechanism involving reduction of microRNA-221 and microRNA-222 expression. These effects may contribute to the impairment of periodontal healing, especially after surgery and during guided regeneration therapies.


Assuntos
MicroRNAs , Humanos , MicroRNAs/metabolismo , Fibronectinas/farmacologia , Ligamento Periodontal/metabolismo , Movimento Celular , Glucose/farmacologia , Células Cultivadas
5.
An Acad Bras Cienc ; 96(2): e20230373, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747835

RESUMO

Bioactive substances can be found in wine lees, a waste from the winemaking industry. This work developed two formulations, a nanoemulsion with coconut oil (NE-OC) and a nanoemulsion with coconut oil and 0.5% of wine lees extract (NE-OC-Ext), to investigate their effect on untreated, bleached, and bleached-colored hair. The oil-in-water (O/W) nanoemulsions were prepared with coconut oil, TweenTM 80, SpanTM 80, AristoflexTM AVC, Conserve NovaMit MFTM, wine lees extract, and deionized water. The hydration measurements were carried out using a Corneometer® CM 825 with the capacitance method. Scanning electron microscopy (SEM) was used to characterize the effect of formulations on hair fibers. Differential Thermal Analysis (DTA) was to assess the thermal stability and compatibility of wine lees and coconut oil in formulations. Compared to NE-OC, NE-OC-Ext showed a greater hydration effect on bleached-colored hair. DTA showed that NE-OC-Ext presented a smaller number of exothermic degradation events than those of NE-OC, suggesting good interaction and compatibility of the wine lees extract in this formulation. This study highlights the value of wine lees, a residue from the winemaking process, and its possibility of use as raw material for the cosmetic hair industry since it shows a greater moisturizing potential in colored hair.


Assuntos
Óleo de Coco , Emulsões , Vinho , Vinho/análise , Óleo de Coco/química , Microscopia Eletrônica de Varredura , Cabelo/química , Cabelo/efeitos dos fármacos , Humanos , Química Verde/métodos
6.
Acc Chem Res ; 55(14): 1900-1911, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35772054

RESUMO

ConspectusThe electrochemical reduction of CO2 (CO2RR) constitutes an alternative to fossil fuel-based technologies for the production of fuels and commodity chemicals. Yet the application of CO2RR electrolyzers is hampered by low energy and Faradaic efficiencies. Concomitant electrochemical reactions, like hydrogen evolution (HER), lower the selectivity, while the conversion of CO2 into (bi)carbonate through solution acid-base reactions induces an additional concentration overpotential. During CO2RR in aqueous media, the local pH becomes more alkaline than the bulk causing an additional consumption of CO2 by the homogeneous reactions. The latter effect, in combination with the low solubility of CO2 in aqueous electrolytes (33 mM), leads to a significant depletion in CO2 concentration at the electrode surface.The nature of the electrolyte, in terms of pH and cation identity, has recently emerged as an important factor to tune both the energy and Faradaic efficiency. In this Account, we summarize the recent advances in understanding electrolyte effects on CO2RR to CO in aqueous solutions, which is the first, and crucial, step to further reduced products. To compare literature findings in a meaningful way, we focus on results reported under well-defined mass transport conditions and using online analytical techniques. The discussion covers the molecular-level understanding of the effects of the proton donor, in terms of the suppression of the CO2 gradient vs enhancement of HER at a given mass transport rate and of the cation, which is crucial in enabling both CO2RR and HER. These mechanistic insights are then translated into possible implications for industrially relevant cell geometries and current densities.

7.
Rev Endocr Metab Disord ; 24(5): 961-977, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37129798

RESUMO

Obesity is a complex, multifactorial and chronic disease. Bariatric surgery is a safe and effective treatment intervention for obesity and obesity-related diseases. However, weight loss after surgery can be highly heterogeneous and is not entirely predictable, particularly in the long-term after intervention. In this review, we present and discuss the available data on patient-related and procedure-related factors that were previously appointed as putative predictors of bariatric surgery outcomes. In addition, we present a critical appraisal of the available evidence on which factors could be taken into account when recommending and deciding which bariatric procedure to perform. Several patient-related features were identified as having a potential impact on weight loss after bariatric surgery, including age, gender, anthropometrics, obesity co-morbidities, eating behavior, genetic background, circulating biomarkers (microRNAs, metabolites and hormones), psychological and socioeconomic factors. However, none of these factors are sufficiently robust to be used as predictive factors. Overall, there is no doubt that before we long for precision medicine, there is the unmet need for a better understanding of the socio-biological drivers of weight gain, weight loss failure and weight-regain after bariatric interventions. Machine learning models targeting preoperative factors and effectiveness measurements of specific bariatric surgery interventions, would enable a more precise identification of the causal links between determinants of weight gain and weight loss. Artificial intelligence algorithms to be used in clinical practice to predict the response to bariatric surgery interventions could then be created, which would ultimately allow to move forward into precision medicine in bariatric surgery prescription.


Assuntos
Cirurgia Bariátrica , Medicina de Precisão , Humanos , Inteligência Artificial , Obesidade , Aumento de Peso , Redução de Peso
8.
Rev Endocr Metab Disord ; 24(6): 1045-1073, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37493841

RESUMO

Polycystic ovary syndrome (PCOS) is recognized as one of the most prevalent endocrinopathy in women at reproductive age. As affected women tend to have poorer assisted reproductive technology (ART) outcomes, PCOS has been suggested to endanger oocyte quality and competence development. The aim of this systematic review was to summarize the available evidence on how the follicular fluid (FF) profile of women with PCOS undergoing in vitro fertilization (IVF) treatment differs from the FF of normo-ovulatory women. For that, an electronic search in PubMed and Web of Science databases was conducted (up to December 2021). The Preferred Reporting Items for Systematic Reviews and Meta-Analyses - PRISMA guidelines were followed, and the Newcastle-Ottawa Scale was used to assess the risk of bias in the included studies. Data retrieved from papers included (n=42), revealed that the FF composition of women with PCOS compared to those without PCOS predominantly diverged at the following molecular classes: oxidative stress, inflammatory biomarkers, growth factors and hormones. Among those biomarkers, some were proposed as being closely related to pathophysiological processes, strengthening the hypothesis that low-grade inflammation and oxidative stress play a critical role in the pathogenesis of PCOS. Notwithstanding, it should be noticed that the available data on PCOS FF fingerprints derives from a limited number of studies conducted in a relatively small number of subjects. Furthermore, phenotypic heterogeneity of PCOS hampers wider comparisons and weakens putative conclusions. Therefore, future studies should be focused at comparing well characterized patient subgroups according to phenotypes.


Assuntos
Síndrome do Ovário Policístico , Feminino , Humanos , Síndrome do Ovário Policístico/metabolismo , Líquido Folicular/metabolismo , Fertilização in vitro , Oócitos/metabolismo , Biomarcadores/metabolismo
9.
Mol Cell Biochem ; 478(12): 2779-2787, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36920577

RESUMO

Neurotensin (NT) is a gastro-intestinal hormone involved in several pathways that regulate energy and glucose homeostasis. NT was hypothesized to act in synergy with incretin hormones to potentiate its anti-diabetic effects. Additionally, circulating NT levels were shown to rise after bariatric surgery-induced weight loss. Knowledge of NT-secreting cells distribution along the small intestine and its variation according to diabetes status could provide insights on NT role in mediating type 2 diabetes (T2D) improvement after bariatric surgery. So, our aims were to characterize NT-expressing cell distribution along the human small intestine and to compare the relative density of NT-expressing cells in the small intestine of individuals with and without T2D undergoing bariatric surgery for obesity treatment. Autopsy-derived small intestine fragments (n = 30) were obtained at every 20 cm along the entire intestinal length. Additionally, jejunum biopsies (n = 29) were obtained during elective gastric bypass interventions from patients with (n = 10) or without T2D (n = 18). NT-expressing cells were identified by immunohistochemistry and quantified via computerized morphometric analysis. NT-expressing cell density increased along the human small intestine. NT-expressing cell density was significantly higher from 200 cm distal to the duodenojejunal flexure onward, as well as in subjects with T2D when compared to those without T2D. NT-expressing cell density increases along the human small gut, and a higher density is found in individuals with T2D. This finding suggests a potential role for NT in the mechanisms of disease and T2D improvement observed after bariatric surgery.


Assuntos
Diabetes Mellitus Tipo 2 , Derivação Gástrica , Humanos , Neurotensina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Intestino Delgado/metabolismo , Incretinas/metabolismo
10.
Phys Chem Chem Phys ; 25(4): 2897-2906, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36633182

RESUMO

Insights into how to control the activity and selectivity of the electrochemical CO2 reduction reaction are still limited because of insufficient knowledge of the reaction mechanism and kinetics, which is partially due to the lack of information on the interfacial pH, an important parameter for proton-coupled reactions like CO2 reduction. Here, we used a reliable and sensitive pH sensor combined with the rotating ring-disk electrode technique, in which a functionalized Au ring electrode works as a real-time detector of the OH- generated during the CO2 reduction reaction at a gold disk electrode. Variations of the interfacial pH due to both electrochemical and homogeneous reactions are mapped and the correlation of the interfacial pH with these reactions is inferred. The interfacial pH near the disk electrode increases from 7 to 12 with increasing current density, with a sharp increase at around -0.5 V vs. RHE, which indicates a change of the dominant buffering species. Through scan rate-dependent voltammetry and chronopotentiometry experiments, the homogenous reactions are shown to reach equilibrium within the time scale of the pH measurements, so that the interfacial concentrations of different carbonaceous species can be calculated using equilibrium constants. Furthermore, pH measurements were also performed under different conditions to disentangle the relationship between the interfacial pH and other electrolyte effects. The buffer effect of alkali metal cations is confirmed, showing that weakly hydrated cations lead to less pronounced pH gradients. Finally, we probe to which extent increasing mass transport and the electrolyte buffer capacity can aid in suppressing the increase of the interfacial pH, showing that the buffer capacity is the dominant factor in suppressing interfacial pH variations.

11.
Int J Sports Med ; 44(6): 427-437, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36931293

RESUMO

Tumors present dysfunctional vasculature that limits blood perfusion and hinders immune cells delivery. We aimed to investigate if regular voluntary running promotes tumor vascular remodelling, improves intratumoral immune cells infiltration and inhibits tumor growth. Tumors were induced in C57BL/6 male mice (n=28) by subcutaneous inoculation in the dorsal region with a suspension of RM1 cells (1.5×105 cells/500 µL PBS) and randomly allocated into two groups: sedentary (n=14) and voluntarily exercised on a wheel (n=14). Seven mice from each group were sacrificed 14 and 28 days after cells' inoculation to evaluate tumor weight, microvessel density, vessels' lumen regularity and the intratumoral quantity of NKG2D receptors, CD4+and CD8+T cells, by immunohistochemistry. The statistical inference was done through a two-way ANOVA. Exercised mice developed smaller tumors at 14 (0.17±0.1 g vs. 0.48±0.2 g, p<0.05) and 28 (0.92±0.7 g vs. 2.09±1.3 g, p<0.05) days, with higher microvessel density (21.20±3.2 vs. 15.86±4.0 vessels/field, p<0.05), more regular vessels' lumen (1.06±0.2 vs. 1.43±0.2, p<0.05), and higher CD8+T cells (464.95±48.0 vs. 364.70±49.4 cells/mm2, p<0.01), after 28 days. NKG2D expression was higher in exercised mice at 14 (263.27±25.8 cells/mm2, p<0.05) and 28 (295.06±56.2 cells/mm2, p<0.001) days. Regular voluntary running modulates tumor vasculature, increases immune cells infiltration and attenuates tumor growth, in mice.


Assuntos
Neoplasias , Corrida , Masculino , Animais , Camundongos , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Camundongos Endogâmicos C57BL , Neovascularização Patológica
12.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36675195

RESUMO

Obesity is associated with complex adipose tissue energy metabolism remodeling. Whether AT metabolic reprogramming differs according to body mass index (BMI) and across different obesity classes is unknown. This study's purpose was to evaluate and compare bioenergetics and energy substrate preference of visceral adipose tissue (VAT) pertaining to individuals with obesity class 2 and class 3. VAT obtained from patients with obesity (n = 15) class 2 (n = 7; BMI 37.53 ± 0.58 kg/m2) or class 3 (n = 8; BMI 47.79 ± 1.52 kg/m2) was used to assess oxygen consumption rate (OCR) bioenergetics and mitochondrial substrate preferences. VAT of patients with obesity class 3 presented significantly higher non-mitochondrial oxygen consumption (p < 0.05). In VAT of patients with obesity class 2, inhibition of pyruvate and glutamine metabolism significantly decreased maximal respiration and spare respiratory capacity (p < 0.05), while pyruvate and fatty acid metabolism inhibition, which renders glutamine the only available substrate, increased the proton leak with a protective role against oxidative stress (p < 0.05). In conclusion, VAT bioenergetics of patients with obesity class 2 depicts a greater dependence on glucose/pyruvate and glutamine metabolism, suggesting that patients within this BMI range are more likely to be responsive to interventions based on energetic substrate modulation for obesity treatment.


Assuntos
Glutamina , Gordura Intra-Abdominal , Humanos , Glutamina/metabolismo , Gordura Intra-Abdominal/metabolismo , Obesidade/metabolismo , Metabolismo Energético , Piruvatos/metabolismo , Tecido Adiposo/metabolismo
13.
Med Res Rev ; 42(4): 1518-1544, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35274315

RESUMO

Diabetic kidney disease (DKD) is one of the most prevalent comorbidities of diabetes mellitus and the leading cause of the end-stage renal disease (ESRD). DKD results from chronic exposure to hyperglycemia, leading to progressive alterations in kidney structure and function. The early development of DKD is clinically silent and when albuminuria is detected the lesions are often at advanced stages, leading to rapid kidney function decline towards ESRD. DKD progression can be arrested or substantially delayed if detected and addressed at early stages. A major limitation of current methods is the absence of albuminuria in non-albuminuric phenotypes of diabetic nephropathy, which becomes increasingly prevalent and lacks focused therapy. Metabolomics is an ever-evolving omics technology that enables the study of metabolites, downstream products of every biochemical event that occurs in an organism. Metabolomics disclosures complex metabolic networks and provide knowledge of the very foundation of several physiological or pathophysiological processes, ultimately leading to the identification of diseases' unique metabolic signatures. In this sense, metabolomics is a promising tool not only for the diagnosis but also for the identification of pre-disease states which would confer a rapid and personalized clinical practice. Herein, the use of metabolomics as a tool to identify the DKD metabolic signature of tubule interstitial lesions to diagnose or predict the time-course of DKD will be discussed. In addition, the proficiency and limitations of the currently available high-throughput metabolomic techniques will be discussed.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Falência Renal Crônica , Albuminúria , Biomarcadores/metabolismo , Diabetes Mellitus Tipo 2/terapia , Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/metabolismo , Diagnóstico Precoce , Humanos , Metabolômica/métodos , Prognóstico
14.
J Am Chem Soc ; 144(4): 1589-1602, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-34962791

RESUMO

CO2 electroreduction (CO2RR) is a sustainable alternative for producing fuels and chemicals. Metal cations in the electrolyte have a strong impact on the reaction, but mainly alkali species have been studied in detail. In this work, we elucidate how multivalent cations (Li+, Cs+, Be2+, Mg2+, Ca2+, Ba2+, Al3+, Nd3+, and Ce3+) affect CO2RR and the competing hydrogen evolution by studying these reactions on polycrystalline gold at pH = 3. We observe that cations have no effect on proton reduction at low overpotentials, but at alkaline surface pH acidic cations undergo hydrolysis, generating a second proton reduction regime. The activity and onset for the water reduction reaction correlate with cation acidity, with weakly hydrated trivalent species leading to the highest activity. Acidic cations only favor CO2RR at low overpotentials and in acidic media. At high overpotentials, the activity for CO increases in the order Ca2+ < Li+ < Ba2+ < Cs+. To favor this reaction there must be an interplay between cation stabilization of the *CO2- intermediate, cation accumulation at the outer Helmholtz plane (OHP), and activity for water reduction. Ab initio molecular dynamics simulations with explicit electric field show that nonacidic cations show lower repulsion at the interface, accumulating more at the OHP, thus triggering local promoting effects. Water dissociation kinetics is increasingly promoted by strongly acidic cations (Nd3+, Al3+), in agreement with experimental evidence. Cs+, Ba2+, and Nd3+ coordinate to adsorbed CO2 steadily; thus they enable *CO2- stabilization and barrierless protonation to COOH and further reduction products.

15.
Rev Endocr Metab Disord ; 23(3): 503-519, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34855133

RESUMO

Metabolomics emerged as an important tool to gain insights on how the body responds to therapeutic interventions. Bariatric surgery is the most effective treatment for severe obesity and obesity-related co-morbidities. Our aim was to conduct a systematic review of the available data on metabolomics profiles that characterize patients submitted to different bariatric surgery procedures, which could be useful to predict clinical outcomes including weight loss and type 2 diabetes remission. For that, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses - PRISMA guidelines were followed. Data from forty-seven original study reports addressing metabolomics profiles induced by bariatric surgery that met eligibility criteria were compiled and summarized. Amino acids, lipids, energy-related and gut microbiota-related were the metabolite classes most influenced by bariatric surgery. Among these, higher pre-operative levels of specific lipids including phospholipids, long-chain fatty acids and bile acids were associated with post-operative T2D remission. As conclusion, metabolite profiling could become a useful tool to predict long term response to different bariatric surgery procedures, allowing more personalized interventions and improved healthcare resources allocation.


Assuntos
Cirurgia Bariátrica , Diabetes Mellitus Tipo 2 , Obesidade Mórbida , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/cirurgia , Humanos , Lipídeos , Metabolômica , Obesidade Mórbida/cirurgia
16.
Neuroendocrinology ; 112(11): 1039-1045, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35066497

RESUMO

COVID-19 is an intriguing infectious condition with multisystemic manifestations and variable outcomes that are influenced by the concomitant presence of non-communicable diseases, such as obesity, diabetes, and cardiovascular disease, which were previously well established epidemics and therefore are considered global syndemics. Although an enormous progress towards understanding mechanisms of SARS-CoV-2 infection leading to COVID-19 has been made, there are still many areas of uncertainty to clarify. Systemic diseases are characterized by common links that allow integrating apparently unrelated disease manifestations. The authors launch the provocative hypothesis that serotonin is the putative mediator linking the lung, gut, cardiac, neurological, and other systemic manifestations that characterize severe COVID-19 in individuals with diabetes and obesity. In support of a role for serotonin in the mechanisms leading to disease severity are the similarities between acute and post-acute COVID-19 manifestations and neuroendocrine tumors presenting with carcinoid syndrome. Scientific discussion is set by highlighting the available clues that support this working hypothesis to trigger future research aimed at unravelling the molecular pathways underlying SARS-CoV-2 infection that are still far from being fully disclosed.


Assuntos
COVID-19 , Diabetes Mellitus , Humanos , COVID-19/complicações , SARS-CoV-2 , Serotonina , Diabetes Mellitus/epidemiologia , Obesidade/complicações , Obesidade/epidemiologia
17.
Nutr Cancer ; 74(4): 1261-1269, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34278900

RESUMO

Laryngeal squamous cell carcinoma (LSCC) is a frequent cancer subtype among head and neck cancers. Exacerbated inflammation and nutritional deficit are common features in this type of cancer and can be used as a prognostic marker. This study aimed to investigate the relationship between body mass index (BMI), neutrophil-to-lymphocyte ratio (NLR), and systemic inflammation response index (SIRI) on overall survival (OS) of LSCC patients. In this retrospective cohort study, 168 patients were followed for 5 years. Data on clinical factors, patients' life habits, height, weight, and hematological parameters were collected. BMI, NLR, and SIRI were calculated. Pretreatment NLR≥ 2.02 and SIRI≥ 1160.85 were independent prognostic factors for poor OS. Low BMI did not significantly affect the OS. However, the inflammatory parameters had their predictive capacity altered when stratified by the BMI classification. NLR≥ 2.02 + Low BMI or SIRI≥ 1160.85 + Low BMI increased in 8.6 and 3.8 times the risk of death, respectively. In contrast, stratification by normal/high BMI classification eliminated the predictive capacity of NLR and SIRI. Here, we demonstrated the possible ability of BMI to change the prognostic capacity of inflammatory markers NLR and SIRI in patients with LSCC.Supplemental data for this article is available online at https://doi.org/10.1080/01635581.2021.1952447.


Assuntos
Neoplasias de Cabeça e Pescoço , Neutrófilos , Índice de Massa Corporal , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Inflamação/patologia , Linfócitos/patologia , Neutrófilos/patologia , Prognóstico , Estudos Retrospectivos , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
18.
Br J Nutr ; 127(3): 344-352, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-33787474

RESUMO

Accumulating evidence indicates that dietary phenolic compounds can prevent obesity-related disorders. We investigated whether the consumption of polyphenol-rich jabuticaba peel and seed powder (JPSP) could ameliorate the progression of diet-induced obesity in mice. Male mice were fed a control diet or a high-fat (HF) diet for 9 weeks. After this period, mice were fed control, HF or HF diets supplemented with 5 % (HF-J5), 10 % (HF-J10) or 15 % (HF-J15) of JPSP, for 4 additional weeks. Supplementation with JPSP not only attenuated HF-induced weight gain and fat accumulation but also ameliorated the pro-inflammatory response associated with obesity, as evidenced by the absence of mast cells in the visceral depot accompanied by lower IL-6 and TNF-α at the tissue and circulating levels. JPSP-supplemented mice also exhibited smaller-sized adipocytes, reduced levels of leptin and higher levels of adiponectin, concomitant with improved glucose metabolism and insulin sensitivity. The magnitude of the observed effects was dependent on JPSP concentration with HF-J10- and HF-J15-fed mice showing metabolic profiles similar to control. This study reveals that the consumption of JPSP protects against the dysfunction of the adipose tissue and metabolic disturbances in obese mice. Thus, these findings indicate the therapeutic potential of the phenolic-rich JPSP in preventing obesity-related disorders.


Assuntos
Dieta Hiperlipídica , Obesidade , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos , Camundongos Obesos , Obesidade/metabolismo , Fenóis/farmacologia , Fenóis/uso terapêutico , Pós/metabolismo , Pós/uso terapêutico
19.
Phys Chem Chem Phys ; 24(4): 2022-2031, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34909813

RESUMO

Electrolyte buffering species have been shown to act as proton donors in the hydrogen evolution reaction (HER). Analogously, we study here whether these electrolyte species may participate in other reactions by investigating CO electrooxidation (COOR) on a gold rotating disk electrode. This model system, characterized by fast kinetics, exhibits a diffusion-limited regime, which helps in the identification of the species dictating the diffusion-limited current. Through a systematic concentration dependence study in a variety of buffers, we show that electrolyte buffering species act as oxygen donor shuttles in COOR, lowering the reaction overpotential. A similar correlation between electrolyte and electrocatalytic activity was observed for COOR on a different electrode material (Pt). Probing the electrode-electrolyte interface by attenuated total reflection infrared spectroscopy (ATR-FTIR) and modelling the surface speciation to include the effect of the solution reactions, we propose that the buffer conjugated base generates the oxygen donor (i.e. OH-) through its acid-base reaction with water.

20.
An Acad Bras Cienc ; 94(4): e20201058, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36477988

RESUMO

UVB-irradiation increases the risk of various skin disorders, therefore leading to inflammation and oxidative stress. In this sense, antioxidant-rich herbs such as Rosmarinus officinalis may be useful in minimizing the damage promoted by reactive oxygen species. In this work, we report the efficacy of a R. officinalis hydroethanolic extract (ROe)-loaded emulgel in preventing UVB-related skin damage. Total phenols were determined using Folin-Ciocalteu assay, and the main phytocomponents in the extract were identified by UHPLC-HRMS. Moreover, in vitro sun protection factor (SPF) value of ROe was also assessed, and we investigated the in vivo protective effect of an emulgel containing ROe against UVB-induced damage in an animal model. The ROe exhibited commercially viable SPF activity (7.56 ± 0.16) and remarkable polyphenolic content (24.15 ± 0.11 mg (Eq.GA)/g). HPLC-MS and UHPLC-HRMS results showcased that the main compounds in ROe were: rosmarinic acid, carnosic acid and carnosol. The evaluation of the in vitro antioxidant activity demonstrated a dose-dependent effect of ROe against several radicals and the capacity to reduce iron. Therefore, we demonstrated that topical application of the formulation containing ROe inhibited edema formation, myeloperoxidase activity, GSH depletion and maintained ferric reducing (FRAP) and ABTS scavenging abilities of the skin after UVB exposure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA