Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 24(32): 25034-25046, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28920151

RESUMO

Metallurgical slag was used for the simultaneous removal of high concentrations of arsenite and arsenate from laboratory solutions and severely contaminated groundwater. Apart from demonstrating the high efficiency of arsenic removal in presence of competing species, the work aims to explore the physicochemical mechanisms of the process by means of microscopy observation and a detailed statistical analysis of existing kinetic and isotherm equations. Fitting was performed by non-linear least squares using weighted residuals; ANOVA and bootstrap methods were used to compare the models. Literature suggests that the metal oxides in the slag are efficient adsorbents of As(III) and (V). However, the low surface area of the slag precludes adsorption; SEM observation provide evidence of a mechanism of co-precipitation of lixiviated cations with contaminant anions. The reaction kinetics provide essential information on the interaction between the contaminants, particularly on the common ion effect in groundwater. The Fritz-Schlünder isotherm allows modelling the saturation effect at low slag doses. The efficiency of the process is demonstrated by an arsenic removal of 99% in groundwater using 4-g slag/L, resulting in an effluent with 0.01 mg As/L, which is below Mexican and international standards for drinking water.


Assuntos
Arseniatos/química , Arsenitos/química , Precipitação Química , Água Subterrânea/análise , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Ânions/química , Água Subterrânea/química , Resíduos Industriais/análise , Metalurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA