Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34903667

RESUMO

KRAS is mutated in 90% of human pancreatic ductal adenocarcinomas (PDACs). To function, KRAS must localize to the plasma membrane (PM) via a C-terminal membrane anchor that specifically engages phosphatidylserine (PtdSer). This anchor-binding specificity renders KRAS-PM localization and signaling capacity critically dependent on PM PtdSer content. We now show that the PtdSer lipid transport proteins, ORP5 and ORP8, which are essential for maintaining PM PtdSer levels and hence KRAS PM localization, are required for KRAS oncogenesis. Knockdown of either protein, separately or simultaneously, abrogated growth of KRAS-mutant but not KRAS-wild-type pancreatic cancer cell xenografts. ORP5 or ORP8 knockout also abrogated tumor growth in an immune-competent orthotopic pancreatic cancer mouse model. Analysis of human datasets revealed that all components of this PtdSer transport mechanism, including the PM-localized EFR3A-PI4KIIIα complex that generates phosphatidylinositol-4-phosphate (PI4P), and endoplasmic reticulum (ER)-localized SAC1 phosphatase that hydrolyzes counter transported PI4P, are significantly up-regulated in pancreatic tumors compared to normal tissue. Taken together, these results support targeting PI4KIIIα in KRAS-mutant cancers to deplete the PM-to-ER PI4P gradient, reducing PM PtdSer content. We therefore repurposed the US Food and Drug Administration-approved hepatitis C antiviral agent, simeprevir, as a PI4KIIIα inhibitor In a PDAC setting. Simeprevir potently mislocalized KRAS from the PM, reduced the clonogenic potential of pancreatic cancer cell lines in vitro, and abrogated the growth of KRAS-dependent tumors in vivo with enhanced efficacy when combined with MAPK and PI3K inhibitors. We conclude that the cellular ER-to-PM PtdSer transport mechanism is essential for KRAS PM localization and oncogenesis and is accessible to therapeutic intervention.


Assuntos
Antineoplásicos/farmacologia , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Fosfatidilserinas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Receptores de Esteroides/metabolismo , 1-Fosfatidilinositol 4-Quinase/antagonistas & inibidores , 1-Fosfatidilinositol 4-Quinase/genética , 1-Fosfatidilinositol 4-Quinase/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Nus , Inibidores de Proteases/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptores de Esteroides/genética , Simeprevir/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Biochem Biophys Res Commun ; 483(1): 590-595, 2017 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-28011265

RESUMO

Roquin is an E3 ligase that regulates mRNA stability. Mice with a mutation in the Rc3h1 gene and Roquin protein, referred to as Roquinsan/san or sanroque mice, develop broad-spectrum chronic inflammatory conditions and autoimmune pathologies. Our laboratory recently reported that sanroque mice also develop extensive inflammation that is localized in the small intestine but is rare in the colon. Here, we demonstrate that small intestinal intraepithelial lymphocytes (IELs) are present in the epithelium of sanroque mice but that cell recoverability is low using standard extraction techniques even though lamina propria lymphocytes (LPLs) can be recovered in normal numbers. In studies aimed at characterizing T cell costimulatory markers and activation molecules on LPLs in sanroque mice, we identified Ly6C and 4-1BB (CD137) as being expressed at elevated levels on sanroque small intestinal LPLs, and we show that both of those subsets, in conjunction with cells expressing the KLRG1 T cell activation molecule, are sources of IL-17A, IFN-γ, and TNFα. TNFα was primarily produced by 4-1BB+, KLRG1-cells, but was also made by some 4-1BB-, KLRG1-cells, and 4-1BB-, KLRG1+ cells. These findings collectively suggest that the small intestinal inflammatory response in sanroque mice is driven, at least in part, by LPL activation through Ly6C and 4-1BB signaling, and they provide further evidence in support of using the sanroque mouse as an animal model of chronic small intestinal inflammation.


Assuntos
Antígenos Ly/fisiologia , Linfócitos/metabolismo , Mucosa/metabolismo , Receptores Imunológicos/fisiologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/fisiologia , Animais , Doença de Crohn/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Heterozigoto , Inflamação , Interferon gama/metabolismo , Interleucina-17/metabolismo , Intestino Delgado/metabolismo , Lectinas Tipo C , Camundongos , Fator de Necrose Tumoral alfa/metabolismo
3.
J Immunol ; 187(11): 5834-41, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22043014

RESUMO

IL-10(-/-) mice, an animal model of Th1-mediated inflammatory bowel disease, were screened for the expression of 600 microRNAs (miRNAs) using colonic tissues and PBLs from animals having either mild inflammation or severe intestinal inflammation. The development of colonic inflammation in IL-10(-/-) mice was accompanied by upregulation in the expression of 10 miRNAs (miR-19a, miR-21, miR-31, miR-101, miR-223, miR-326, miR-142-3p, miR-142-5p, miR-146a, and miR-155). Notably, the expression of all of these miRNAs plus miR-375 was elevated in PBLs of IL-10(-/-) mice at a time when colonic inflammation was minimal, suggesting that changes in specific miRNAs in circulating leukocytes may be harbingers of ensuing colonic pathology. In vitro exposure of colonic intraepithelial lymphocytes to IL-10 resulted in downregulation of miR-19a, miR-21, miR-31, miR-101, miR-223, and miR-155. Interestingly, unlike IL-10(-/-) mice, changes in miRNAs in PBL of dextran sulfate sodium-treated mice were minimal but selectively elevated in the colon after pathology was severe. We further show that miR-223 is a negative regulator of the Roquin ubiquitin ligase, Roquin curtails IL-17A synthesis, and the 3' untranslated region of Roquin is a target for miR-223, thus defining a molecular pathway by which IL-10 modulates IL-17-mediated inflammation. To identify additional miRNAs that may be involved in the regulation of Roquin, transcriptome analysis was done using cDNAs from HeLa cells transfected with 90 miRNA mimics. Twenty-six miRNAs were identified as potential negative regulators of Roquin, thus demonstrating functional complexity in gene expression regulation by miRNAs.


Assuntos
Colo/metabolismo , Regulação da Expressão Gênica/genética , Doenças Inflamatórias Intestinais/genética , Leucócitos/metabolismo , MicroRNAs/análise , Animais , Colo/imunologia , Colo/patologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/imunologia , Células HeLa , Humanos , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Interleucina-10/deficiência , Interleucina-10/imunologia , Leucócitos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , MicroRNAs/biossíntese , MicroRNAs/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Regulação para Cima
4.
Nat Commun ; 14(1): 465, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36709325

RESUMO

Oncogenic KRAS expression generates a metabolic dependency on aerobic glycolysis, known as the Warburg effect. We report an effect of increased glycolytic flux that feeds into glycosphingolipid biosynthesis and is directly linked to KRAS oncogenic function. High resolution imaging and genetic approaches show that a defined subset of outer leaflet glycosphingolipids, including GM3 and SM4, is required to maintain KRAS plasma membrane localization, with GM3 engaging in cross-bilayer coupling to maintain inner leaflet phosphatidylserine content. Thus, glycolysis is critical for KRAS plasma membrane localization and nanoscale spatial organization. Reciprocally oncogenic KRAS selectively upregulates cellular content of these same glycosphingolipids, whose depletion in turn abrogates KRAS oncogenesis in pancreatic cancer models. Our findings expand the role of the Warburg effect beyond ATP generation and biomass building to high-level regulation of KRAS function. The positive feedforward loop between oncogenic KRAS signaling and glycosphingolipid synthesis represents a vulnerability with therapeutic potential.


Assuntos
Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Membrana Celular/metabolismo , Transdução de Sinais , Glicólise , Glicoesfingolipídeos/metabolismo
5.
Eur J Med Chem ; 217: 113381, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33756124

RESUMO

KRAS plays an essential role in regulating cell proliferation, differentiation, migration and survival. Mutated KRAS is a major driver of malignant transformation in multiple human cancers. We showed previously that fendiline (6) is an effective inhibitor of KRAS plasma membrane (PM) localization and function. In this study, we designed, synthesized and evaluated a series of new fendiline analogs to optimize its drug properties. Systemic structure-activity relationship studies by scaffold repurposing led to the discovery of several more active KRAS PM localization inhibitors such as compounds 12f (NY0244), 12h (NY0331) and 22 (NY0335) which exhibit nanomolar potencies. These compounds inhibited oncogenic KRAS-driven cancer cell proliferation at single-digit micromolar concentrations in vitro. In vivo studies in a xenograft model of pancreatic cancer revealed that 12h and 22 suppressed oncogenic KRAS-expressing MiaPaCa-2 tumor growth at a low dose range of 1-5 mg/kg with no vasodilatory effects, indicating their potential as chemical probes and anticancer therapeutics.


Assuntos
Antineoplásicos/farmacologia , Membrana Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fendilina/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cães , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Feminino , Fendilina/análogos & derivados , Fendilina/química , Humanos , Camundongos , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Relação Estrutura-Atividade
6.
Int J Exp Pathol ; 91(3): 276-80, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20353422

RESUMO

Soluble gp130 (sgp130) has been shown to suppress the inflammatory response of autoimmune pathologies; however, its effects on virus infection are not known. Here, we report that intraperitoneal treatment of mice with sgp130-Fc fusion protein at the time of oral reovirus serotype 3 infection resulted in altered morphopathological changes that were evident by less shortening of intestinal villi length and crypt depth after infection. That the effect mediated by sgp130 treatment was due to an increase in intestinal crypt cell proliferation was demonstrated by an increase in the number of crypt mitotic figures. This was further confirmed by increased immunoreactivity to the Cdc47 proliferation-associated antigen in crypts of sgp130-treated virus-infected mice compared to infected non-treated mice. These findings suggest that sgp130 may have a beneficial effect during intestinal virus infection by disrupting interleukin-6 trans-signalling, thereby reducing the local inflammatory response.


Assuntos
Receptor gp130 de Citocina/metabolismo , Mucosa Intestinal/patologia , Mucosa Intestinal/virologia , Infecções por Reoviridae/patologia , Animais , Receptor gp130 de Citocina/imunologia , Feminino , Hiperplasia , Inflamação/imunologia , Inflamação/virologia , Mucosa Intestinal/metabolismo , Orthoreovirus Mamífero 3/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/imunologia
7.
Int Immunol ; 20(1): 141-54, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18046045

RESUMO

IL-10-deficient mice develop enterocolitis due to a failure of cytokine regulation; however, the full scope of that response remains poorly defined. Using multiplex analysis to quantify the activity of 23 regulatory and effector cytokines produced by colonic leukocytes, we demonstrate a vast dysregulation process of 18 cytokines in IL-10-/- mice from 7 to 27 weeks of age. Of those, IL-12p40, IL-6, granulocyte macrophage colony-stimulating factor, IFN-gamma, IL-13 and monocyte chemoattractant protein-1 (MCP-1) had the highest single correlations with pathology (r = 0.7766-0.7016). Importantly, there were strong associations (r = 0.7071-0.9074) between those cytokines and as many as 10 additional cytokines, indicating a high degree of cytokine complexity as disease progressed. IL-17 was notable in that it was produced at high levels by colonic leukocytes from IL-10-/- mice with pathology ranging from mild to severe, though it was not produced by healthy IL-10-/- mice lacking pathology. Tumor necrosis factor alpha (TNFalpha) by itself displayed only a modest association with pathology (r = 0.6340), ranking sixth lowest, though it cross-correlated strongly with the synthesis of 12 other cytokines, implying that the destructive effects associated with TNFalpha may be due to interactions of multiple cytokine activities. IL-23 expression did not correlate with pathology, possibly suggesting that IL-23 is involved in the initiation but not the perpetuation of inflammation. Four cytokines (IL-2, IL-3, IL-4 and IL-5) remained negative in IL-10-/- mice, demonstrating that cytokine dysregulation was not universal. These findings emphasize the need to better understand cytokine networks in chronic inflammation and they provide a rationale for combining immunotherapies in the treatment of intestinal inflammation.


Assuntos
Colite/imunologia , Colite/fisiopatologia , Colo/patologia , Citocinas/metabolismo , Células Epiteliais/patologia , Interleucina-10/deficiência , Leucócitos/patologia , Animais , Colite/patologia , Colo/citologia , Colo/imunologia , Citocinas/genética , Citocinas/imunologia , Células Epiteliais/citologia , Células Epiteliais/imunologia , Feminino , Interleucina-10/genética , Leucócitos/citologia , Leucócitos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C
8.
J Cell Biochem ; 105(1): 271-6, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18523983

RESUMO

The small intestine has been shown to be an extra-pituitary site of thyroid stimulating hormone (TSH) production, and previous in vivo studies have shown that TSH synthesis localizes within areas of enteric virus infection within the small intestine; however, the cellular source of intestinal TSH has not been adequately determined. In the present study, we have used the murine MODE-K small intestinal epithelial cell line to demonstrate both at the transcriptional level and as a secreted hormone, as measured in a TSHbeta-specific enzyme-linked assay, that epithelial cells in fact respond to infection with reovirus serotype 3 Dearing strain by upregulating TSH synthesis. Moreover, sequence analysis of a PCR-amplified TSHbeta product from MODE-K cells revealed homology to mouse pituitary TSHbeta. These findings have direct functional implications for understanding a TSH immune-endocrine circuit in the small intestine.


Assuntos
Células Epiteliais/metabolismo , Intestinos/citologia , Orthoreovirus Mamífero 3/fisiologia , Tireotropina Subunidade beta/biossíntese , Animais , Linhagem Celular , Camundongos , Análise de Sequência , Tireotropina Subunidade beta/genética , Tireotropina Subunidade beta/metabolismo , Regulação para Cima
9.
J Leukoc Biol ; 82(5): 1166-73, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17702824

RESUMO

This study has examined the stimulatory and costimulatory effects of IL-18 on two subsets of murine small intestinal intraepithelial lymphocytes (IELs) defined by the expression of the CD43 S7 glycoform. Data from gene array studies and real-time PCR indicated that S7(+) IELs had significantly higher levels of gene expression for the IL-18 receptor and the IL-18R accessory protein than S7(-) IELs. IL-18 costimulation of IELs in conjunction with CD3-induced activation resulted in significantly greater proliferation than CD3 stimulation alone. In CFSE dilution experiments, IL-18 costimulation favored the S7(+) IEL population. IL-18 costimulation did not affect apoptosis of either S7(-) or S7(+) IELs compared with CD3 stimulation alone. Although IL-18 costimulation did not alter the total number of IFN-gamma-producing cells relative to CD3 stimulation alone, twice as many S7(+) IELs were IFN-gamma -secreting cells than S7(-) IELs in both CD3-stimulated and IL-18-costimulated cultures. Notably, direct IL-18 stimulation in the absence of CD3 activation induced an IFN-gamma response that was predominantly directed to the S7(+) population, indicating that IL-18 is itself an IFN-gamma activational signal for intestinal T cells. In contrast, direct IL-18 stimulation of IELs did not generate TNF-alpha-producing cells, indicating a differential response in the activation of proinflammatory cytokines following IL-18 exposure. These findings point to distinctly different activational effects of IL-18 on IELs, both with regard to the type of functional responses elicited and with respect to the IEL subsets affected.


Assuntos
Interleucina-18/farmacologia , Mucosa Intestinal/imunologia , Intestino Delgado/imunologia , Leucossialina/metabolismo , Subpopulações de Linfócitos T/imunologia , Animais , Complexo CD3/imunologia , Complexo CD3/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Morte Celular/imunologia , Proliferação de Células , Citometria de Fluxo , Interferon gama/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Leucossialina/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Receptores de Interleucina-18/metabolismo , Subpopulações de Linfócitos T/metabolismo
10.
Mol Cell Biol ; 38(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29158292

RESUMO

K-Ras must localize to the plasma membrane (PM) for biological activity. We show here that multiple acid sphingomyelinase (ASM) inhibitors, including tricyclic antidepressants, mislocalized phosphatidylserine (PtdSer) and K-RasG12V from the PM, resulting in abrogation of K-RasG12V signaling and potent, selective growth inhibition of mutant K-Ras-transformed cancer cells. Concordantly, in nude mice, the ASM inhibitor fendiline decreased the rate of growth of oncogenic K-Ras-expressing MiaPaCa-2 tumors but had no effect on the growth of the wild-type K-Ras-expressing BxPC-3 tumors. ASM inhibitors also inhibited activated LET-60 (a K-Ras ortholog) signaling in Caenorhabditis elegans, as evidenced by suppression of the induced multivulva phenotype. Using RNA interference against C. elegans genes encoding other enzymes in the sphingomyelin (SM) biosynthetic pathway, we identified 14 enzymes whose knockdown strongly or moderately suppressed the LET-60 multivulva phenotype. In mammalian cells, pharmacological agents that target these enzymes all depleted PtdSer from the PM and caused K-RasG12V mislocalization. These effects correlated with changes in SM levels or subcellular distribution. Selected compounds, including sphingosine kinase inhibitors, potently inhibited the proliferation of oncogenic K-Ras-expressing pancreatic cancer cells. In conclusion, these results show that normal SM metabolism is critical for K-Ras function, which may present therapeutic options for the treatment of K-Ras-driven cancers.


Assuntos
Esfingolipídeos/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Animais , Caenorhabditis elegans , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Proliferação de Células , Humanos , Camundongos , Camundongos Nus , Transdução de Sinais , Esfingomielinas/genética , Esfingomielinas/metabolismo , Proteínas ras/metabolismo
11.
J Immunol Methods ; 308(1-2): 251-4, 2006 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-16337223

RESUMO

Methods for obtaining preparation of intestinal intraepithelial lymphocytes (IELs) present special challenges for immunologists due to difficulties in recovering IELs devoid of contaminating enterocytes. Although high-purity preparations can be achieved using techniques such as flow cytometric or magnetic-activated cell sorting, those methods may not be feasible on a routine basis and may result in low overall cell recoveries. Thus, most procedures today rely on density gradient centrifugation as a means of separating IEL and non-hematopoietic cells; however, the purity of IELs from those preparations can vary considerably. Here, we describe a modification of an IEL purification technique that uses two sequential Percoll gradients rather than one gradient in the purification scheme. This alteration consistently results in 80-85% IEL purity in cell preparations. Moreover, it requires no additional reagents, has no adverse effect on the phenotypic composition of recovered IELs or on the cell viability, and adds minimal additional time to the isolation protocol. It is expected that this procedure will have practical benefit as a means of isolating IELs with high purity on a routine basis that can be used for in vivo or in vitro studies of IEL function.


Assuntos
Separação Celular/métodos , Intestino Delgado/citologia , Intestino Delgado/imunologia , Linfócitos/citologia , Animais , Células Epiteliais/citologia , Células Epiteliais/imunologia , Feminino , Citometria de Fluxo/métodos , Subpopulações de Linfócitos/citologia , Subpopulações de Linfócitos/imunologia , Linfócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Povidona , Dióxido de Silício
12.
Anat Rec A Discov Mol Cell Evol Biol ; 288(3): 316-22, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16463380

RESUMO

Achondroplasia, the most common short-limbed dwarfism in humans, results from a single nucleotide substitution in the gene for fibroblast growth factor receptor 3 (FGFR3). FGFR3 regulates bone growth in part via the mitogen-activated protein kinase pathway (MAPK). To examine the role of this pathway in chondrocyte differentiation, a transgenic mouse was generated that expresses a constitutively active mutant of MEK1 in chondrocytes and exhibits dwarfing characteristics typical of human achondroplasia, i.e., shortened axial and appendicular skeletons, mid-facial hypoplasia, and dome-shaped cranium. In this study, cephalometrics of the MEK1 mutant skulls were assessed to determine if the MEK1 mice are a good model of achondroplasia. Skull length, arc of the cranial vault, and area, maximum and minimum diameters of the brain case were measured on digitized radiographs of skulls of MEK1 and control mice. Cranial base and nasal bone length and foramen magnum diameter were measured on midsagittal micro-CT sections. Data were normalized by dividing by the cube root of each animal's weight. Transgenic mice exhibited a domed skull, deficient midface, and (relatively) prognathic mandible and had a shorter cranial base and nasal bone than the wild-type. Skull length was significantly less in transgenic mice, but cranial arc was significantly greater. The brain case was larger and more circular and minimum diameter of the brain case was significantly greater in transgenic mice. The foramen magnum was displaced anteriorly but not narrowed. MEK1 mouse cephalometrics confirm these mice as a model for achondroplasia, demonstrating that the MAP kinase signaling pathway is involved in FGF signaling in skeletal development.


Assuntos
Acondroplasia/patologia , Modelos Animais de Doenças , Camundongos Transgênicos/anormalidades , Crânio/patologia , Acondroplasia/diagnóstico por imagem , Acondroplasia/genética , Animais , Cefalometria , Camundongos , Radiografia , Crânio/diagnóstico por imagem
13.
PLoS One ; 11(1): e0146111, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26771831

RESUMO

The thyroid stimulating hormone beta-subunit (TSHß) with TSHα form a glycoprotein hormone that is produced by the anterior pituitary in the hypothalamus-pituitary-thyroid (HPT) axis. Although TSHß has been known for many years to be made by cells of the immune system, the role of immune system TSH has remained unclear. Recent studies demonstrated that cells of the immune system produce a novel splice variant isoform of TSHß (TSHßv), but little if any native TSHß. Here, we show that within three days of systemic infection of mice with Listeria monocytogenes, splenic leukocytes synthesized elevated levels of TSHßv. This was accompanied by an influx of CD14+, Ly6C+, Ly6G+ cells into the thyroid of infected mice, and increased levels of intrathyroidal TSHßv gene expression. Adoptive transfer of carboxyfluorescein succinimidyl ester (CFSE)-labeled splenic leukocytes from infected mice into non-infected mice migrated into the thyroid as early as forty-eight hours post-cell transfer, whereas CFSE-labeled cells from non-infected mice failed to traffic to the thyroid. These findings demonstrate for the first time that during bacterial infection peripheral leukocytes produce elevated levels of TSHßv, and that spleen cells traffic to the thyroid where they produce TSHßv intrathyroidally.


Assuntos
Leucócitos/citologia , Listeria monocytogenes , Listeriose/metabolismo , Isoformas de Proteínas/metabolismo , Baço/citologia , Glândula Tireoide/metabolismo , Tireotropina Subunidade beta/metabolismo , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL
14.
Immunol Res ; 33(3): 257-65, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16462002

RESUMO

Reovirus, a member of the Reoviridae family, is a ubiquitous virus in vertebrate hosts. Although disease caused by reovirus infection is for the most part mild, studies of reovirus have particularly been valuable as a model for understanding the local host response to replicating foreign antigen in intestinal and respiratory sites. In this article, a brief overview is presented of the basic features of reovirus infection, as will the host's humoral and cellular immune response during the infectious cycle. New information regarding the interactions and involvement of immune response molecules during reovirus infection will be presented based on multiple analyte array studies from our laboratory.


Assuntos
Enteropatias/virologia , Infecções por Reoviridae/imunologia , Reoviridae/imunologia , Animais , Formação de Anticorpos , Citocinas/genética , Citocinas/metabolismo , Imunidade Celular , Enteropatias/imunologia , Camundongos
15.
Immunol Lett ; 99(1): 36-44, 2005 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15894109

RESUMO

The immune and neuroendocrine systems have been shown to work conjointly in a number of ways. One aspect of this has to do with a potential role for thyroid stimulating hormone (TSH) in the regulation of the mucosal immune system, although the mechanisms by which this occurs remain vague. To more thoroughly understand how TSH participates in intestinal intraepithelial lymphocyte (IEL) development and immunity, experiments have been conducted to define local sites of intestinal TSH production, and to characterize changes that occur in the synthesis of TSH during acute enteric virus infection. Here, we demonstrate that TSH in the small intestine is specifically localized to regions below villus crypts as seen by immunocytochemical staining, which revealed high-level TSH staining in lower crypts in the absence of IL-7 staining, and TSH and IL-7 co-staining in upper crypt regions. Additionally, prominent TSH staining was evident in TSH 'hotblocks' sparsely dispersed throughout the epithelial layer. In rotavirus-infected mice, the TSH staining pattern differed significantly from that of non-infected animals. Notably, at 2 and 3 days post-infection, TSH expression was high in and near apical villi where virus infection was greatest. These findings lend credence to the notion that TSH plays a role both in the development of intestinal T cells, and in the process of local immunity during enteric virus infection.


Assuntos
Enterócitos/metabolismo , Enterócitos/virologia , Infecções por Enterovirus/metabolismo , Infecções por Enterovirus/virologia , Interleucina-7/biossíntese , Tireotropina/biossíntese , Animais , Antígenos CD4/metabolismo , Antígenos CD8/metabolismo , Rim/metabolismo , Fígado/metabolismo , Camundongos , Receptores da Tireotropina/metabolismo , Rotavirus/fisiologia , Tireotropina/metabolismo , Fatores de Tempo , Regulação para Cima
16.
J Orthop Res ; 22(4): 759-67, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15183431

RESUMO

Cartilage oligomeric matrix protein (COMP) is a large extracellular matrix protein expressed in cartilage, ligament and tendon. Mutations in the COMP gene cause two dominantly inherited skeletal dysplasias, pseudoachondroplasia (PSACH) and Multiple Epiphyseal Dysplasia (MED/EDM1). We report on a novel point mutation D511Y in the seventh calcium-binding repeat of the COMP gene and the resulting iliac crest growth plate pathology. The PSACH iliac crest growth plate is comprised of a large region of resting chondrocytes above a narrow region composed of clusters of disorganized proliferative and hypertrophic chondrocytes. Chondrocytes in all zones show massive intracellular retention of COMP and the surrounding extracellular matrix is deficient in COMP. Moreover, the 511Y COMP mutation selectively affects type IX collagen as little is found in the growth plate matrix whereas type II collagen and aggrecan are abundant in the matrix. Chondrocyte remnants are observed in the chondrocyte clusters and dead cells are found throughout the growth plate. Apoptosis studies demonstrate an unusual pattern of TUNEL staining in the PSACH chondrocytes compared to the control growth plate. These in vivo findings support our previous observation that retention of COMP leads to chondrocyte death. These results also add to the increasing evidence that PSACH and EDM1 are rER storage diseases and that impaired linear growth and joint erosion are caused by the disruptive effect of massive amounts of COMP within the chondrocytes.


Assuntos
Acondroplasia/patologia , Apoptose , Condrócitos/patologia , Colágeno Tipo X/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Glicoproteínas/metabolismo , Lâmina de Crescimento/metabolismo , Acondroplasia/genética , Acondroplasia/metabolismo , Agrecanas , Proteína de Matriz Oligomérica de Cartilagem , Criança , Condrócitos/metabolismo , Colágeno Tipo II/metabolismo , Colágeno Tipo X/genética , Análise Mutacional de DNA , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Feminino , Glicoproteínas/genética , Lâmina de Crescimento/patologia , Humanos , Ílio , Técnicas Imunoenzimáticas , Marcação In Situ das Extremidades Cortadas , Lectinas Tipo C , Proteínas Matrilinas , Mutação Puntual , Proteoglicanas/metabolismo
17.
Gene ; 549(1): 134-40, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25062971

RESUMO

Roquin-1, a RING finger E3 ubiquitin ligase, functions as a modulator of inflammation; however, nothing is known about how Rc3h1 expression is regulated. Here, we describe an opposing relationship between Roquin-1 and the IL-17 proinflammatory cytokine by demonstrating that enforced expression of Rc3h1 restricts Il17a expression, and that exposure of T cells to IL-10, a cytokine with immunosuppressive activity, increases Rc3h1 expression. Luciferase reporter assays conducted using eight transcription factor plasmids (STAT1, STAT3, STAT5, GATA2, c-Rel, IKZF1, IKZF2, and IKZF3) demonstrated that STAT1, STAT3, GATA2, and c-Rel increased Rc3h1 promoter activity, whereas IKZF2 decreased activity. Gene expression of those five transcription factors increased in T cells exposed to IL-10. Transcription factor-specific siRNAs suppressed the IL-10 effect on Rc3h1 transcription. These findings identify a role for IL-10 in regulating Rc3h1 transcription, and they have implications for understanding how Roquin-1 controls the immune response.


Assuntos
Interleucina-10/metabolismo , Linfócitos T/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Interleucina-17/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética
18.
Sci Rep ; 4: 4920, 2014 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24815331

RESUMO

Roquin, an E3 ligase, is involved in curtailing autoimmune pathology as seen from studies using mice with mutated (Rc3h1(san/san)) or disrupted (Rc3h1(gt/gt)) Rc3h1 gene. The extent to which intestinal immunopathology is caused by insufficient Roquin expression in the immune system, or by Roquin impairment in non-hematopoietic cells, has not been determined. Using bone marrow cells from Rc3h1(gt/gt) mice transferred into irradiated normal mice (Rc3h1(gt/gt) → NL chimeras), we show that inflammation developed in the small intestine, kidney, lung, liver, and spleen. Proinflammatory cytokine levels were elevated in lamina propria lymphocytes (LPLs). Inflammation in the liver was accompanied by areas of hepatocyte apoptosis. Lung inflammation consisted of an influx of both T cells and B cells. Small intestinal LPLs had increased numbers of CD44(hi), CD62L(lo), KLRG1(+), ICOS(+) short-lived effector cells, indicating an influx of activated T cells. Following oral infection with L. monocytogenes, Rc3h1(gt/gt) → NL chimeras had more liver pathology and greater numbers of bacteria in the Peyer's patches than NL → NL chimeras. These findings demonstrate that small intestinal inflammation in Rc3h1(san/san) and Rc3h1(gt/gt) mice is due to a failure of Roquin expression in the immune system and not to insufficient systemic Roquin expression.


Assuntos
Enterite/sangue , Enterite/genética , Expressão Gênica , Hematopoese/genética , Ubiquitina-Proteína Ligases/genética , Animais , Antígenos de Superfície/metabolismo , Caspase 3 , Citocinas/metabolismo , Modelos Animais de Doenças , Enterite/imunologia , Enterite/metabolismo , Enterite/patologia , Memória Imunológica , Imunofenotipagem , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Linfonodos/imunologia , Linfonodos/metabolismo , Ativação Linfocitária , Linfócitos/imunologia , Linfócitos/metabolismo , Camundongos , Camundongos Knockout , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/metabolismo , Ubiquitina-Proteína Ligases/deficiência
19.
PLoS One ; 8(2): e56436, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23451046

RESUMO

Roquin, an E3 ubiquitin ligase that localizes to cytosolic RNA granules, is involved in regulating mRNA stability and translation. Mice that have a M199R mutation in the Roquin protein (referred to as sanroque or Roquin(san/san) mice) develop autoimmune pathologies, although the extent to which these occur in the intestinal mucosa has not been determined. Here, we demonstrate that Roquin(san/san) mice reproducibly develop intestinal inflammation in the small intestine but not the colon. Similarly, mice generated in our laboratory in which the Roquin gene was disrupted by insertion of a gene trap cassette (Roquin(gt/gt) mice) had small intestinal inflammation that mimicked that of Roquin(san/san) mice. MLN cells in Roquin(san/san) mice consisted of activated proliferating T cells, and had increased numbers of CD44(hi) CD62L(lo) KLRG1(+) short-lived effector cells. Proportionally more small intestinal intraepithelial lymphocytes in Roquin(san/san) mice expressed the ICOS T cell activation marker. Of particular interest, small intestinal lamina propria lymphocytes in Roquin(san/san) mice consisted of a high proportion of Gr-1(+) T cells that included IL-17A(+) cells and CD8(+) IFN-γ(+) cells. Extensive cytokine dysregulation resulting in both over-expression and under-expression of chemotactic cytokines occurred in the ileum of Roquin(san/san) mice, the region most prone to the development of inflammation. These findings demonstrate that chronic inflammation ensues in the intestine following Roquin alteration either as a consequence of protein mutation or gene disruption, and they have implications for understanding how small intestinal inflammation is perpetuated in Crohn's disease (CD). Due to the paucity of animal models of CD-like pathophysiology in the small intestine, and because the primary gene/protein defects of the Roquin animal systems used here are well-defined, it will be possible to further elucidate the underlying genetic and molecular mechanisms that drive the disease process.


Assuntos
Inflamação/imunologia , Inflamação/metabolismo , Intestino Delgado/imunologia , Intestino Delgado/metabolismo , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética , Animais , Citocinas/imunologia , Feminino , Citometria de Fluxo , Fígado/imunologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Mutantes , Ubiquitina-Proteína Ligases/metabolismo
20.
J Leukoc Biol ; 87(2): 301-8, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19889730

RESUMO

In the absence of IL-10, colonic inflammation ensues, which is characterized by high levels of IL-17. Here, we demonstrate a direct correlation between ICOS expression and IL-17 production in cIELs. IL-10(-/-) mice had increased numbers of cIELs and greater colon weight. Although the CD69 early activation antigen was expressed on cIELs from normal and IL-10(-/-) mice, ICOS was expressed only on cIELs from IL-10(-/-) mice. IL-17-producing cells in IL-10(-/-) mice consisted of CD4(+) and CD8(+) cIELs; however, CD4(+) cells were the predominant IL-17-producing cell population. Culture of cIELs from IL-10(-/-) mice with IL-23 resulted in an increase in ICOS and IL-17 expression, whereas IL-10 suppressed expression of ICOS and IL-17. This occurred in primary cultures and recall stimulation experiments. The ICOS ligand B7RP-1 was up-regulated on colonic epithelial cells and on a population of large granular leukocytes during inflammation. Culture of cIELs with B7RP-1(+) DCs enhanced IL-17A production from normal cIELs but failed to do so using cIELs from ICOS(-/-) mice. In vivo treatment of IL-10(-/-) mice with antibody to ICOS resulted in a significant reduction in colonic pathology. These findings implicate ICOS as an activational signal of Th17 cells during chronic intestinal inflammation, and they suggest that under some conditions, control of ICOS expression may help to suppress chronic intestinal inflammation.


Assuntos
Antígenos de Diferenciação de Linfócitos T/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Colo/imunologia , Interleucina-10/imunologia , Interleucina-17/imunologia , Mucosa Intestinal/imunologia , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/genética , Antígenos de Diferenciação de Linfócitos T/metabolismo , Antígeno B7-1/genética , Antígeno B7-1/imunologia , Antígeno B7-1/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Células Cultivadas , Colo/metabolismo , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Ligante Coestimulador de Linfócitos T Induzíveis , Proteína Coestimuladora de Linfócitos T Induzíveis , Inflamação/imunologia , Inflamação/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-17/biossíntese , Interleucina-17/genética , Mucosa Intestinal/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA