Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell Microbiol ; 16(4): 535-47, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24245664

RESUMO

Clostridium perfringens phospholipase C (CpPLC), also called α-toxin, plays a key role in the pathogenesis of gas gangrene. CpPLC may lead to cell lysis at concentrations that cause extensive degradation of plasma membrane phospholipids. However, at sublytic concentrations it induces cytotoxicity without inducing evident membrane damage. The results of this work demonstrate that CpPLC becomes internalized in cells by a dynamin-dependent mechanism and in a time progressive process: first, CpPLC colocalizes with caveolin both at the plasma membrane and in vesicles, and later it colocalizes with early and late endosomes and lysosomes. Lysosomal damage in the target cells is evident 9 h after CpPLC exposure. Our previous work demonstrated that CpPLCinduces ERK1/2 activation, which is involved in its cytotoxic effect. In this work we found that cholesterol sequestration, dynamin inhibition, as well as inhibition of actin polymerization, prevent CpPLC internalization and ERK1/2 activation, involving endocytosis in the signalling events required for CpPLC cytotoxic effect at sublytic concentrations. These results provide new insights about the mode of action of this bacterial phospholipase C, previously considered to act only locally on cell membrane.


Assuntos
Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidade , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/toxicidade , Endocitose , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Fosfolipases Tipo C/metabolismo , Fosfolipases Tipo C/toxicidade , Linhagem Celular , Humanos
2.
J Infect Dis ; 206(8): 1218-26, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22904339

RESUMO

Clostridium perfringens, the most broadly distributed pathogen in nature, produces a prototype phospholipase C, also called α-toxin, which plays a key role in the pathogenesis of gas gangrene. α-Toxin causes plasma membrane disruption at high concentrations, but the role of intracellular mediators in its toxicity at low concentrations is unknown. This work demonstrates that α-toxin causes oxidative stress and activates the MEK/ERK pathway in cultured cells and furthermore provides compelling evidence that O(2)(-.), hydrogen peroxide, and the OH(.) radical are involved in its cytotoxic and myotoxic effects. The data show that antioxidants and MEK1 inhibitors reduce the cytotoxic and myotoxic effects of α-toxin and demonstrate that edaravone, a clinically used hydroxyl radical trap, reduces the myonecrosis and the mortality caused by an experimental infection with C. perfringens in a murine model of gas gangrene. This knowledge provides new insights for the development of novel therapies to reduce tissue damage during clostridial myonecrosis.


Assuntos
Toxinas Bacterianas/toxicidade , Proteínas de Ligação ao Cálcio/toxicidade , Clostridium perfringens/patogenicidade , Sistema de Sinalização das MAP Quinases , Espécies Reativas de Oxigênio/toxicidade , Fosfolipases Tipo C/toxicidade , Animais , Antipirina/administração & dosagem , Antipirina/análogos & derivados , Linhagem Celular , Modelos Animais de Doenças , Edaravone , Sequestradores de Radicais Livres/administração & dosagem , Gangrena Gasosa/tratamento farmacológico , Gangrena Gasosa/mortalidade , Gangrena Gasosa/patologia , Camundongos , Músculo Esquelético/patologia , Análise de Sobrevida , Resultado do Tratamento
3.
Biotechnol Rep (Amst) ; 37: e00780, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36619904

RESUMO

SARS-CoV-2 receptor binding domain (RBD) recognizes the angiotensin converting enzyme 2 (ACE2) receptor in host cells that enables infection. Due to its antigenic specificity, RBD production is important for development of serological assays. Here we have established a system for stable RBD production in HEK 293T mammalian cells that simultaneously express the recombinant fluorescent protein dTomato, which enables kinetic monitoring of RBD expression by fluorescence microscopy. In addition, we have validated the use of this recombinant RBD in an ELISA assay for the detection of anti-RBD antibodies in serum samples of COVID-19 convalescent patients. Recombinant RBD generated using this approach can be useful for generation of antibody-based therapeutics against SARS-CoV-2, as well serological assays aimed to test antibody responses to this relevant virus.

4.
FEBS Open Bio ; 11(12): 3262-3275, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34709730

RESUMO

Bacterial phospholipases and sphingomyelinases are lipolytic esterases that are structurally and evolutionarily heterogeneous. These enzymes play crucial roles as virulence factors in several human and animal infectious diseases. Some bacterial phospholipases C (PLCs) have both phosphatidylcholinesterase and sphingomyelinase C activities. Among them, Listeria monocytogenes PlcB, Clostridium perfringens PLC, and Pseudomonas aeruginosa PlcH are the most deeply understood. In silico predictions of substrates docking with these three bacterial enzymes provide evidence that they interact with different substrates at the same active site. This review discusses structural aspects, substrate specificity, and the mechanism of action of those bacterial enzymes on target cells and animal infection models to shed light on their roles in pathogenesis.


Assuntos
Esfingomielina Fosfodiesterase/metabolismo , Esfingomielina Fosfodiesterase/fisiologia , Fosfolipases Tipo C/metabolismo , Fosfolipases Tipo C/fisiologia , Animais , Clostridium perfringens/enzimologia , Clostridium perfringens/patogenicidade , Humanos , Listeria monocytogenes/enzimologia , Listeria monocytogenes/patogenicidade , Fosfolipases , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/patogenicidade , Fosfolipases Tipo C/genética
5.
Toxicon ; 197: 48-54, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33862027

RESUMO

Phospholipases A2 (PLA2s) and PLA2-like proteins are significant components of snake venoms. Some of these proteins act as potent toxins causing muscle necrosis, which may lead to amputation in severe envenomings. Fundamental aspects of the mechanism of action of these toxins are still not completely known. Myotoxin-I is a catalytically active Asp49 PLA2 from the venom of Bothrops asper, a medically relevant pit viper from Central America. Myotoxin-II is a catalytically inactive Lys49 PLA2-homolog also present in the venom of this snake. For the first time, the in vivo cellular localization of these myotoxins was studied in mouse skeletal muscle using immunofluorescence. Results showed that after 5 min of injection in the gastrocnemius muscle, both toxins initially interacted with the sarcolemma, and some colocalization with nuclei was already evident, especially for Mt-II. After 3 h of injection, a significant colocalization with the nuclei was observed for both toxins. These in vivo results confirm the importance of the initial interaction of these toxins with the sarcolemma and furthermore highlight the internalization and interaction of the toxins with nuclei during their pathophysiological activities, as observed in recent studies using cell culture.


Assuntos
Bothrops , Venenos de Crotalídeos , Animais , América Central , Venenos de Crotalídeos/toxicidade , Modelos Animais de Doenças , Fosfolipases A2 do Grupo II , Camundongos , Proteínas de Répteis/toxicidade
6.
Sci Rep ; 8(1): 10619, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30006575

RESUMO

Phospholipases A2 are a major component of snake venoms. Some of them cause severe muscle necrosis through an unknown mechanism. Phospholipid hydrolysis is a possible explanation of their toxic action, but catalytic and toxic properties of PLA2s are not directly connected. In addition, viperid venoms contain PLA2-like proteins, which are very toxic even if they lack catalytic activity due to a critical mutation in position 49. In this work, the PLA2-like Bothrops asper myotoxin-II, conjugated with the fluorophore TAMRA, was found to be internalized in mouse myotubes, and in RAW264.7 cells. Through experiments of protein fishing and mass spectrometry analysis, using biotinylated Mt-II as bait, we found fifteen proteins interacting with the toxin and among them nucleolin, a nucleolar protein present also on cell surface. By means of confocal microscopy, Mt-II and nucleolin were shown to colocalise, at 4 °C, on cell membrane where they form Congo-red sensitive assemblies, while at 37 °C, 20 minutes after the intoxication, they colocalise in intracellular spots going from plasmatic membrane to paranuclear and nuclear area. Finally, nucleolin antagonists were found to inhibit the Mt-II internalization and toxic activity and were used to identify the nucleolin regions involved in the interaction with the toxin.


Assuntos
Venenos de Crotalídeos/metabolismo , Fosfolipases A2 do Grupo II/metabolismo , Neurotoxinas/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Répteis/metabolismo , Animais , Bothrops , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Venenos de Crotalídeos/toxicidade , Fosfolipases A2 do Grupo II/toxicidade , Células HeLa , Humanos , Hidrólise , Microscopia Intravital , Camundongos , Microscopia Confocal , Fibras Musculares Esqueléticas , Neurotoxinas/toxicidade , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Cultura Primária de Células , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Células RAW 264.7 , Interferência de RNA , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Proteínas de Répteis/toxicidade , Nucleolina
7.
Microbiol Mol Biol Rev ; 80(3): 597-628, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27307578

RESUMO

Bacterial sphingomyelinases and phospholipases are a heterogeneous group of esterases which are usually surface associated or secreted by a wide variety of Gram-positive and Gram-negative bacteria. These enzymes hydrolyze sphingomyelin and glycerophospholipids, respectively, generating products identical to the ones produced by eukaryotic enzymes which play crucial roles in distinct physiological processes, including membrane dynamics, cellular signaling, migration, growth, and death. Several bacterial sphingomyelinases and phospholipases are essential for virulence of extracellular, facultative, or obligate intracellular pathogens, as these enzymes contribute to phagosomal escape or phagosomal maturation avoidance, favoring tissue colonization, infection establishment and progression, or immune response evasion. This work presents a classification proposal for bacterial sphingomyelinases and phospholipases that considers not only their enzymatic activities but also their structural aspects. An overview of the main physiopathological activities is provided for each enzyme type, as are examples in which inactivation of a sphingomyelinase- or a phospholipase-encoding gene impairs the virulence of a pathogen. The identification of sphingomyelinases and phospholipases important for bacterial pathogenesis and the development of inhibitors for these enzymes could generate candidate vaccines and therapeutic agents, which will diminish the impacts of the associated human and animal diseases.


Assuntos
Bactérias/patogenicidade , Fungos/patogenicidade , Fosfolipase D/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Fosfolipases Tipo C/metabolismo , Bactérias/enzimologia , Firmicutes/enzimologia , Firmicutes/patogenicidade , Fungos/enzimologia , Proteobactérias/enzimologia , Proteobactérias/patogenicidade , Staphylococcus aureus/enzimologia , Staphylococcus aureus/patogenicidade , Fatores de Virulência/metabolismo
8.
PLoS One ; 9(1): e86475, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24466113

RESUMO

Clostridium perfringens phospholipase C (CpPLC), also called α-toxin, is the most toxic extracellular enzyme produced by this bacteria and is essential for virulence in gas gangrene. At lytic concentrations, CpPLC causes membrane disruption, whereas at sublytic concentrations this toxin causes oxidative stress and activates the MEK/ERK pathway, which contributes to its cytotoxic and myotoxic effects. In the present work, the role of PKC, ERK 1/2 and NFκB signalling pathways in ROS generation induced by CpPLC and their contribution to CpPLC-induced cytotoxicity was evaluated. The results demonstrate that CpPLC induces ROS production through PKC, MEK/ERK and NFκB pathways, the latter being activated by the MEK/ERK signalling cascade. Inhibition of either of these signalling pathways prevents CpPLC's cytotoxic effect. In addition, it was demonstrated that NFκB inhibition leads to a significant reduction in the myotoxicity induced by intramuscular injection of CpPLC in mice. Understanding the role of these signalling pathways could lead towards developing rational therapeutic strategies aimed to reduce cell death during a clostridialmyonecrosis.


Assuntos
Toxinas Bacterianas/farmacologia , Proteínas de Ligação ao Cálcio/farmacologia , MAP Quinase Quinase 1/metabolismo , Melanoma/patologia , Músculo Esquelético/patologia , NF-kappa B/metabolismo , Proteína Quinase C/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fosfolipases Tipo C/farmacologia , Animais , Western Blotting , Células CHO , Proliferação de Células/efeitos dos fármacos , Cricetulus , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA