Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(2): 027001, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37505965

RESUMO

The macroscopic coherence in superconductors supports dissipationless supercurrents that could play a central role in emerging quantum technologies. Accomplishing unequal supercurrents in the forward and backward directions would enable unprecedented functionalities. This nonreciprocity of critical supercurrents is called the superconducting (SC) diode effect. We demonstrate the strong SC diode effect in conventional SC thin films, such as niobium and vanadium, employing external magnetic fields as small as 1 Oe. Interfacing the SC layer with a ferromagnetic semiconductor EuS, we further accomplish the nonvolatile SC diode effect reaching a giant efficiency of 65%. By careful control experiments and theoretical modeling, we demonstrate that the critical supercurrent nonreciprocity in SC thin films could be easily accomplished with asymmetrical vortex edge and surface barriers and the universal Meissner screening current governing the critical currents. Our engineering of the SC diode effect in simple systems opens the door for novel technologies while revealing the ubiquity of the Meissner screening effect induced SC diode effect in superconducting films, and it should be eliminated with great care in the search for exotic superconducting states harboring finite-momentum Cooper pairing.

2.
Proc Natl Acad Sci U S A ; 117(16): 8775-8782, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32253317

RESUMO

Under certain conditions, a fermion in a superconductor can separate in space into two parts known as Majorana zero modes, which are immune to decoherence from local noise sources and are attractive building blocks for quantum computers. Promising experimental progress has been made to demonstrate Majorana zero modes in materials with strong spin-orbit coupling proximity coupled to superconductors. Here we report signatures of Majorana zero modes in a material platform utilizing the surface states of gold. Using scanning tunneling microscope to probe EuS islands grown on top of gold nanowires, we observe two well-separated zero-bias tunneling conductance peaks aligned along the direction of the applied magnetic field, as expected for a pair of Majorana zero modes. This platform has the advantage of having a robust energy scale and the possibility of realizing complex designs using lithographic methods.

3.
Nat Mater ; 20(1): 76-83, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32807921

RESUMO

In lithium-ion batteries (LIBs), many promising electrodes that are based on transition metal oxides exhibit anomalously high storage capacities beyond their theoretical values. Although this phenomenon has been widely reported, the underlying physicochemical mechanism in such materials remains elusive and is still a matter of debate. In this work, we use in situ magnetometry to demonstrate the existence of strong surface capacitance on metal nanoparticles, and to show that a large number of spin-polarized electrons can be stored in the already-reduced metallic nanoparticles (that are formed during discharge at low potentials in transition metal oxide LIBs), which is consistent with a space charge mechanism. Through quantification of the surface capacitance by the variation in magnetism, we further show that this charge capacity of the surface is the dominant source of the extra capacity in the Fe3O4/Li model system, and that it also exists in CoO, NiO, FeF2 and Fe2N systems. The space charge mechanism revealed by in situ magnetometry can therefore be generalized to a broad range of transition metal compounds for which a large electron density of states is accessible, and provides pivotal guidance for creating advanced energy storage systems.

4.
Opt Express ; 30(20): 35988-35998, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36258537

RESUMO

This study comprehensively investigated the coherent lattice dynamics in Bi2Se3 by ultrafast optical pump-probe spectroscopy with tunable near-infrared probe pulses. Sample-thickness- and probe-wavelength-dependent experiments revealed the key role of Bi2Se3 optical property in the generation and detection of photoinduced strain waves, whose confinement initiated coherent interlayer vibrations. Furthermore, the frequency and lifetime of the interlayer vibrations could be quantitatively explained with a modified linear chain and an acoustic mismatch model considering elastic coupling at sample-substrate interfaces. The results of this work provide insights for analyzing and interpreting, through ultrafast optical spectroscopy, nanomechanical interactions in layered materials.

5.
Nature ; 533(7604): 513-6, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27225124

RESUMO

Topological insulators are insulating materials that display conducting surface states protected by time-reversal symmetry, wherein electron spins are locked to their momentum. This unique property opens up new opportunities for creating next-generation electronic, spintronic and quantum computation devices. Introducing ferromagnetic order into a topological insulator system without compromising its distinctive quantum coherent features could lead to the realization of several predicted physical phenomena. In particular, achieving robust long-range magnetic order at the surface of the topological insulator at specific locations without introducing spin-scattering centres could open up new possibilities for devices. Here we use spin-polarized neutron reflectivity experiments to demonstrate topologically enhanced interface magnetism by coupling a ferromagnetic insulator (EuS) to a topological insulator (Bi2Se3) in a bilayer system. This interfacial ferromagnetism persists up to room temperature, even though the ferromagnetic insulator is known to order ferromagnetically only at low temperatures (<17 K). The magnetism induced at the interface resulting from the large spin-orbit interaction and the spin-momentum locking of the topological insulator surface greatly enhances the magnetic ordering (Curie) temperature of this bilayer system. The ferromagnetism extends ~2 nm into the Bi2Se3 from the interface. Owing to the short-range nature of the ferromagnetic exchange interaction, the time-reversal symmetry is broken only near the surface of a topological insulator, while leaving its bulk states unaffected. The topological magneto-electric response originating in such an engineered topological insulator could allow efficient manipulation of the magnetization dynamics by an electric field, providing an energy-efficient topological control mechanism for future spin-based technologies.

6.
Nano Lett ; 21(1): 216-221, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33275436

RESUMO

Significant control over the properties of a high-carrier density superconductor via an applied electric field has been considered infeasible due to screening of the field over atomic length scales. Here, we demonstrate an enhancement of up to 30% in critical current in a back-gate tunable NbN micro- and nano superconducting bridges. Our suggested plausible mechanism of this enhancement in critical current based on surface nucleation and pinning of Abrikosov vortices is consistent with expectations and observations for type-II superconductor films with thicknesses comparable to their coherence length. Furthermore, we demonstrate an applied electric field-dependent infinite electroresistance and hysteretic resistance. Our work presents an electric field driven enhancement in the superconducting property in type-II superconductors which is a crucial step toward the understanding of field-effects on the fundamental properties of a superconductor and its exploitation for logic and memory applications in a superconductor-based low-dissipation digital computing paradigm.

7.
Nano Lett ; 21(20): 8554-8562, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34623164

RESUMO

As a 3D topological insulator, bismuth selenide (Bi2Se3) has potential applications for electrically and optically controllable magnetic and optoelectronic devices. Understanding the coupling with its topological phase requires studying the interactions of carriers with the lattice on time scales down to the subpicosecond regime. Here, we investigate the ultrafast carrier-induced lattice contractions and interlayer modulations in Bi2Se3 thin films by time-resolved diffraction using an X-ray free-electron laser. The lattice contraction depends on the carrier concentration and is followed by an interlayer expansion accompanied by oscillations. Using density functional theory and the Lifshitz model, the initial contraction can be explained by van der Waals force modulation of the confined free carrier layers. Our theoretical calculations suggest that the band inversion, related to a topological phase transition, is modulated by the expansion of the interlayer distance. These results provide insights into the topological phase control by light-induced structural change on ultrafast time scales.

8.
Nano Lett ; 20(12): 8446-8452, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33166150

RESUMO

Two-dimensional nanoelectronics, plasmonics, and emergent phases require clean and local charge control, calling for layered, crystalline acceptors or donors. Our Raman, photovoltage, and electrical conductance measurements combined with ab initio calculations establish the large work function and narrow bands of α-RuCl3 enable modulation doping of exfoliated single and bilayer graphene, chemical vapor deposition grown graphene and WSe2, and molecular beam epitaxy grown EuS. We further demonstrate proof of principle photovoltage devices, control via twist angle, and charge transfer through hexagonal boron nitride. Short-ranged lateral doping (≤65 nm) and high homogeneity are achieved in proximate materials with a single layer of α-RuCl3. This leads to the best-reported monolayer graphene mobilities (4900 cm2/(V s)) at these high hole densities (3 × 1013 cm-2) and yields larger charge transfer to bilayer graphene (6 × 1013 cm-2).

9.
Phys Rev Lett ; 122(24): 247002, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31322391

RESUMO

The induced superconductivity (SC) in a robust and scalable quantum material with strong Rashba spin-orbit coupling is particularly attractive for generating topological superconductivity and Majorana bound states (MBS). Gold (111) thin film has been proposed as a promising candidate because of the large Rashba energy, the predicted topological nature, and the possibility for large-scale MBS device fabrications. We experimentally demonstrate two important steps towards achieving such a goal. We successfully show induced SC in the Shockley surface state (SS) of ultrathin Au(111) layers grown over epitaxial vanadium films, which is easily achievable on a wafer scale. The emergence of SC in the SS, which is physically separated from a bulk superconductor, is attained by indirect quasiparticle scattering processes instead of by conventional interfacial Andreev reflections. We further show the ability to tune the SS Fermi level (E_{F}) by interfacing SS with a high-κ dielectric ferromagnetic insulator EuS. The shift of E_{F} from ∼550 to ∼34 mV in superconducting SS is an important step towards realizing MBS in this robust system.

10.
Nature ; 493(7433): 509-13, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23344361

RESUMO

The use of molecular spin state as a quantum of information for storage, sensing and computing has generated considerable interest in the context of next-generation data storage and communication devices, opening avenues for developing multifunctional molecular spintronics. Such ideas have been researched extensively, using single-molecule magnets and molecules with a metal ion or nitrogen vacancy as localized spin-carrying centres for storage and for realizing logic operations. However, the electronic coupling between the spin centres of these molecules is rather weak, which makes construction of quantum memory registers a challenging task. In this regard, delocalized carbon-based radical species with unpaired spin, such as phenalenyl, have shown promise. These phenalenyl moieties, which can be regarded as graphene fragments, are formed by the fusion of three benzene rings and belong to the class of open-shell systems. The spin structure of these molecules responds to external stimuli (such as light, and electric and magnetic fields), which provides novel schemes for performing spin memory and logic operations. Here we construct a molecular device using such molecules as templates to engineer interfacial spin transfer resulting from hybridization and magnetic exchange interaction with the surface of a ferromagnet; the device shows an unexpected interfacial magnetoresistance of more than 20 per cent near room temperature. Moreover, we successfully demonstrate the formation of a nanoscale magnetic molecule with a well-defined magnetic hysteresis on ferromagnetic surfaces. Owing to strong magnetic coupling with the ferromagnet, such independent switching of an adsorbed magnetic molecule has been unsuccessful with single-molecule magnets. Our findings suggest the use of chemically amenable phenalenyl-based molecules as a viable and scalable platform for building molecular-scale quantum spin memory and processors for technological development.

11.
Nano Lett ; 18(10): 6369-6374, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30248266

RESUMO

A superconductor with a spin-split excitation spectrum behaves as an ideal ferromagnetic spin-injector in a tunneling junction. It was theoretically predicted that the combination of two such spin-split superconductors with independently tunable magnetizations may be used as an ideal absolute spin-valve. Here, we report on the first switchable superconducting spin-valve based on two EuS/Al bilayers coupled through an aluminum oxide tunnel barrier. The spin-valve shows a relative resistance change between the parallel and antiparallel configuration of the EuS layers up to 900% that demonstrates a highly spin-polarized current through the junction. Our device may be pivotal for realization of thermoelectric radiation detectors, a logical element for a memory cell in cryogenics, superconductor-based computers, and superconducting spintronics in general.

12.
Nat Mater ; 15(7): 711-6, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27019382

RESUMO

Exploiting 2D materials for spintronic applications can potentially realize next-generation devices featuring low power consumption and quantum operation capability. The magnetic exchange field (MEF) induced by an adjacent magnetic insulator enables efficient control of local spin generation and spin modulation in 2D devices without compromising the delicate material structures. Using graphene as a prototypical 2D system, we demonstrate that its coupling to the model magnetic insulator (EuS) produces a substantial MEF (>14 T) with the potential to reach hundreds of tesla, which leads to orders-of-magnitude enhancement of the spin signal originating from the Zeeman spin Hall effect. Furthermore, the new ferromagnetic ground state of Dirac electrons resulting from the strong MEF may give rise to quantized spin-polarized edge transport. The MEF effect shown in our graphene/EuS devices therefore provides a key functionality for future spin logic and memory devices based on emerging 2D materials in classical and quantum information processing.

13.
Nano Lett ; 16(4): 2714-9, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26943807

RESUMO

We report a unique experimental approach to create topological superconductors by inducing superconductivity into epitaxial metallic thin film with strong spin-orbit coupling. Utilizing molecular beam epitaxy technique under ultrahigh vacuum conditions, we are able to achieve (111) oriented single phase of gold (Au) thin film grown on a well-oriented vanadium (V) s-wave superconductor film with clean interface. We obtained atomically smooth Au thin films with thicknesses even down to below a nanometer showing near-ideal surface quality. The as-grown V/Au bilayer heterostructure exhibits superconducting transition at around 3.9 K. Clear Josephson tunneling and Andreev reflection are observed in S-I-S tunnel junctions fabricated from the epitaxial bilayers. The barrier thickness dependent tunneling and the associated subharmonic gap structures (SGS) confirmed the induced superconductivity in Au (111), paving the way for engineering thin film heterostructures based on p-wave superconductivity and nano devices exploiting Majorana Fermions for quantum computing.

14.
Nano Lett ; 16(7): 4224-9, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27282020

RESUMO

The properties of iron-based superconductors (Fe-SCs) can be varied dramatically with the introduction of dopants and atomic defects. As a pressing example, FeSe, parent phase of the highest-Tc Fe-SC, exhibits prevalent defects with atomic-scale "dumbbell" signatures as imaged by scanning tunneling microscopy (STM). These defects spoil superconductivity when their concentration exceeds 2.5%. Resolving their chemical identity is a prerequisite to applications such as nanoscale patterning of superconducting/nonsuperconducting regions in FeSe as well as fundamental questions such as the mechanism of superconductivity and the path by which the defects destroy it. We use STM and density functional theory to characterize and identify the dumbbell defects. In contrast to previous speculations about Se adsorbates or substitutions, we find that an Fe-site vacancy is the most energetically favorable defect in Se-rich conditions and reproduces our observed STM signature. Our calculations shed light more generally on the nature of Se capping, the removal of Fe vacancies via annealing, and their ordering into a √5 × âˆš5 superstructure in FeSe and related alkali-doped compounds.

15.
Nat Mater ; 19(5): 481-482, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32055033
16.
Nat Mater ; 14(5): 473-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25730394

RESUMO

The discovery of the quantum Hall (QH) effect led to the realization of a topological electronic state with dissipationless currents circulating in one direction along the edge of a two-dimensional electron layer under a strong magnetic field. The quantum anomalous Hall (QAH) effect shares a similar physical phenomenon to that of the QH effect, whereas its physical origin relies on the intrinsic spin-orbit coupling and ferromagnetism. Here, we report the experimental observation of the QAH state in V-doped (Bi,Sb)2Te3 films with the zero-field longitudinal resistance down to 0.00013 ± 0.00007h/e(2) (~3.35 ± 1.76 Ω), Hall conductance reaching 0.9998 ± 0.0006e(2)/h and the Hall angle becoming as high as 89.993° ± 0.004° at T = 25 mK. A further advantage of this system comes from the fact that it is a hard ferromagnet with a large coercive field (Hc > 1.0 T) and a relative high Curie temperature. This realization of a robust QAH state in hard ferromagnetic topological insulators (FMTIs) is a major step towards dissipationless electronic applications in the absence of external fields.

17.
Phys Rev Lett ; 117(12): 126802, 2016 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-27689289

RESUMO

Fundamental insight into the nature of the quantum phase transition from a superconductor to an insulator in two dimensions, or from one plateau to the next or to an insulator in the quantum Hall effect, has been revealed through the study of its scaling behavior. Here, we report on the experimental observation of a quantum phase transition from a quantum-anomalous-Hall insulator to an Anderson insulator in a magnetic topological insulator by tuning the chemical potential. Our experiment demonstrates the existence of scaling behavior from which we extract the critical exponent for this quantum phase transition. We expect that our work will motivate much further investigation of many properties of quantum phase transition in this new context.

18.
Nature ; 524(7563): 42-3, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26245578
19.
Nano Lett ; 15(9): 5835-40, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26288309

RESUMO

The quantum anomalous Hall effect (QAHE) has been recently demonstrated in Cr- and V-doped three-dimensional topological insulators (TIs) at temperatures below 100 mK. In those materials, the spins of unfilled d-electrons in the transition metal dopants are exchange coupled to develop a long-range ferromagnetic order, which is essential for realizing QAHE. However, the addition of random dopants does not only introduce excess charge carriers that require readjusting the Bi/Sb ratio, but also unavoidably introduces paramagnetic spins that can adversely affect the chiral edge transport in QAHE. In this work, we show a heterostructure approach to independently tune the electronic and magnetic properties of the topological surface states in (BixSb1-x)2Te3 without resorting to random doping of transition metal elements. In heterostructures consisting of a thin (BixSb1-x)2Te3 TI film and yttrium iron garnet (YIG), a high Curie temperature (∼550 K) magnetic insulator, we find that the TI surface in contact with YIG becomes ferromagnetic via proximity coupling which is revealed by the anomalous Hall effect (AHE). The Curie temperature of the magnetized TI surface ranges from 20 to 150 K but is uncorrelated with the Bi fraction x in (BixSb1-x)2Te3. In contrast, as x is varied, the AHE resistivity scales with the longitudinal resistivity. In this approach, we decouple the electronic properties from the induced ferromagnetism in TI. The independent optimization provides a pathway for realizing QAHE at higher temperatures, which is important for novel spintronic device applications.

20.
Nat Mater ; 13(2): 178-83, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24362950

RESUMO

Three-dimensional topological crystalline insulators were recently predicted and observed in the SnTe class of IV-VI semiconductors, which host metallic surface states protected by crystal symmetries. In this work, we study thin films of these materials and expose their potential for device applications. We demonstrate that thin films of SnTe and Pb(1-x)Sn(x)Se(Te) grown along the (001) direction are topologically non-trivial in a wide range of film thickness and carry conducting spin-filtered edge states that are protected by the (001) mirror symmetry through a topological invariant. Application of an electric field perpendicular to the film will break the mirror symmetry and generate a bandgap in these edge states. This functionality motivates us to propose a topological transistor device in which charge and spin transport are maximally entangled and simultaneously controlled by an electric field. The high on/off operation speed and coupling of spin and charge in such a device may lead to electronic and spintronic applications for topological crystalline insulators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA