RESUMO
The association of color and sound helps human cognition through a synergetic effect like intersensory facilitation. Although soft human-machine interfaces (HMIs) providing unisensory expression have been widely developed, achieving synchronized optic and acoustic expression in one device system has been relatively less explored. It is because their operating principles are different in terms of materials, and implementation has mainly been attempted through structural approaches. Here, a deformable sound display is developed that generates multiple colored lights with large sound at low input voltage. The device is based on alternating-current electroluminescence (ACEL) covered with perovskite composite films. A sound wave is created by a polymer matrix of the ACEL, while simultaneously, various colors are produced by the perovskite films and the blue electroluminescence (EL) emitted from the phosphors in the ACEL. By patterning different colored perovskite films onto the ACELs, associating the color and the sound is successfully demonstrated by a piano keyboard and a wearable interactive device.
RESUMO
The free-flooded ring (FFR) transducer is an extensively used ring-type acoustic transducer in underwater environments owing to its broad operating frequency bandwidth and small size. However, achieving high sound pressure levels with a single FFR transducer is often difficult, thus necessitating the construction of vertically arranged FFR transducer arrays. This study presents a comprehensive analysis of the electrical and acoustic characteristics of an FFR transducer array by considering the mutual radiation load and the effects of gaps between adjacent piezoelectric rings. The lumped-parameter models of the piezoelectric ring, cylindrical cavity, cylindrical gap, and radiation impedance constitute an entire impedance matrix. The radiation impedance matrix for the FFR transducer array is calculated using the Helmholtz-Kirchhoff integral formula by considering the interaction of the FFR surfaces with the surrounding fluid medium. The proposed model predicts the resonance peaks in the admittance and transmitted voltage response (TVR) with a relative error of 5%, and the TVR level within a 3 dB range. Detailed analyses of a four-FFR transducer array reveal that a wider gap between each FFR leads to a decreased chance of negative conductance and broader operating bandwidth. The proposed model offers valuable insights into the design of FFR transducer arrays.
RESUMO
We developed a piezoelectric micromachined cantilever acoustic vector (PEMCAV) sensor. We modeled the device using a "lumped" approach that considers fluid-structure interaction, the piezoelectric effect, and the mechanical impedance of the cantilever. Due to the high flexibility, the influence of the medium is significant, so fluid-structure interaction must be considered in theoretical modeling. We compared the model data to experimental results. The design parameters optimized using the derived analytical open-circuit sensitivity equation are presented, and the physical characteristics of the sensor are discussed. We used a micromachining technique to fabricate the sensor, added a preamplifier, and tested it using a reference hydrophone under a frequency range of 100 Hz-1 kHz. The analytical predictions and experimental results were in good agreement with respect to frequency response and the directivity of the sensor. Even when the sensor was much smaller than the wavelength ( kaâª1), the proposed sensor exhibited a typical cosine directivity pattern, and the measured sensitivity at 100 Hz was -194 dBV/µPa.
RESUMO
We utilized scanning probe microscopy (SPM) based on a metal-oxide-silicon field-effect transistor (MOSFET) to image interdigitated electrodes covered with oxide films that were several hundred nanometers in thickness. The signal varied depending on the thickness of the silicon dioxide film covering the electrodes. We deposited a 400- or 500-nm-thick silicon dioxide film on each sample electrode. Thick oxide films are difficult to analyze using conventional probes because of their low capacitance. In addition, we evaluated linearity and performed frequency response measurements; the measured frequency response reflected the electrical characteristics of the system, including the MOSFET, conductive tip, and local sample area. Our technique facilitated analysis of the passivation layers of integrated circuits, especially those of the back-end-of-line (BEOL) process, and can be used for subsurface imaging of various dielectric layers.
RESUMO
Miniaturized capacitive microphones often show sensitivity degradation in the low-frequency region due to electrical and acoustical time constants. For low-frequency sound detection, conventional systems use a microphone with a large diaphragm and a large back chamber to increase the time constant. In order to overcome this limitation, an electret gate on a field-effect transistor (ElGoFET) structure was proposed, which is the field-effect transistor (FET) mounted diaphragm faced on electret. The use of the sensing mechanism consisting of the integrated FET and electret enables the direct detection of diaphragm displacement, which leads its acoustic senor application (ElGoFET microphone) and has a strong ability to detect low-frequency sound. We studied a theoretical model and design for low-frequency operation of the ElGoFET microphone prototype. Experimental investigations pertaining to the design, fabrication, and acoustic measurement of the microphone were performed and the results were compared to our analytical predictions. The feasibility of the microphone as a low-frequency micro-electromechanical system (MEMS) microphone, without the need for a direct current bias voltage (which is of particular interest for applications requiring miniaturized components), was demonstrated by the flat-band frequency response in the low-frequency region.
RESUMO
A parametric array (PA) loudspeaker is a highly directional audio source that might grant one's convenience if it is used with mobile devices. However, conventional PA loudspeakers is almost impossible to apply in mobile devices using a battery because of the large power consumption and large device size. In this study, a PA loudspeaker system (PALS) was fabricated and evaluated to show that those difficulties could be overcome to apply it to mobile devices. In order to construct a PALS for demonstration, a power amplifier and signal-processing unit should also be properly designed and built. The PA source transducer should also be designed and built for a mobile device application. These components were integrated into a single PALS. The PALS generated a 125-dB primary wave and 62 dB of a different frequency wave (DFW) through the PA at 0.45 m in a 3 m × 3 m × 2 m semi-anechoic chamber. We confirmed that the half-power bandwidth (HPBW) formed a 6° beam at 83 kHz of DFW and 90 kHz of the primary wave (PW), and the HPBW formed a 7.3° beam at 5 kHz of DFW and a 7.1° beam at 10 kHz of DFW, respectively. Lastly, the power required was 6.65 W without a matching circuit, and 3.25 W with such a circuit.
RESUMO
A fast computational method for modeling and simulation of large projector arrays is presented. The method is based on the array equations that account for the acoustic interaction among the projector elements as well as the individual characteristics of each projector. Unlike the existing solution method in which the acoustic interaction must be known a priori in the form of interaction impedance matrix Z, the present method seeks the solution of modified array equations through iterations without explicitly evaluating the Z matrix. This significantly speeds up the analysis of complex arrays with surrounding structures, where the evaluation of the Z matrix may require a large number of time-consuming finite element computations. The method is compared with the traditional Z-matrix method for the case of a cylindrical array of 72 × 8 Tonpilz transducers. For the same level of accuracy, the iterative method is shown to be up to 2 orders-of-magnitude faster than the Z-matrix method. The method can be used for rapid design and analysis of active sonar arrays and medical ultrasonic transducers, often made of hundreds and even thousands of elements.
RESUMO
A free-flooded ring (FFR) transducer can generate low-frequency sound in a small device and has a wide operating frequency bandwidth. Many studies have been performed that can predict the characteristics of an FFR transducer using analytical techniques and an equivalent circuit model (ECM), and methods to predict properties using numerical simulations have recently been developed. However, an ECM, a type of lumped parameter model (LPM), is still widely used to interpret the properties of such transducers in the design process. In this study, the authors investigated an ECM of an FFR transducer. The ECM consists of three parts: the piezoelectric ring, the cylindrical cavity, and the radiation load. Moreover, it can be included readily in a circuit to drive an FFR transducer. Additionally, an LPM was proposed, considering the mutual radiation loads, to improve the accuracy of the model. Each model was tested in comparisons with the finite element method; it was confirmed that an LPM could predict the properties of an FFR transducer with much better accuracy than an ECM. The LPM developed can save much time in designing FFR transducers.
RESUMO
Parametric array (PA) loudspeakers generate directional audible sound via the PA effect, which can make private listening possible. The practical applications of PA loudspeakers include information technology devices that require large power efficiency transducers with a wide frequency bandwidth. Piezoelectric micromachined ultrasonic transducers (PMUTs) are compact and efficient units for PA sources [Je, Lee, and Moon, Ultrasonics 53, 1124-1134 (2013)]. This study investigated the use of an array of PMUTs to make a PA loudspeaker with high power efficiency and wide bandwidth. The achievable maximum radiation bandwidth of the driver was calculated, and an array of PMUTs with two distinct resonance frequencies (f1 = 100 kHz, f2 = 110 kHz) was designed. Out-of-phase driving was used with the dual-resonance transducer array to increase the bandwidth. The fabricated PMUT array exhibited an efficiency of up to 71%, together with a ±3-dB bandwidth of 17 kHz for directly radiated primary waves, and 19.5 kHz (500 Hz to 20 kHz) for the difference frequency waves (with equalization).
Assuntos
Acústica/instrumentação , Amplificadores Eletrônicos , Eletrônica , Desenho de Equipamento , Som , TransdutoresRESUMO
Capacitive-type transduction is now widely used in MEMS microphones. However, its sensitivity decreases with reducing size, due to decreasing air gap capacitance. In the present study, we proposed and developed the Electret Gate of Field Effect Transistor (ElGoFET) transduction based on an electret and FET (field-effect-transistor) as a novel mechanism of MEMS microphone transduction. The ElGoFET transduction has the advantage that the sensitivity is dependent on the ratio of capacitance components in the transduction structure. Hence, ElGoFET transduction has high sensitivity even with a smaller air gap capacitance, due to a miniaturization of the transducer. A FET with a floating-gate electrode embedded on a membrane was designed and fabricated and an electret was fabricated by ion implantation with Ga(+) ions. During the assembly process between the FET and the electret, the operating point of the FET was characterized using the static response of the FET induced by the electric field due to the trapped positive charge at the electret. Additionally, we evaluated the microphone performance of the ElGoFET by measuring the acoustic response in air using a semi-anechoic room. The results confirmed that the proposed transduction mechanism has potential for microphone applications.
RESUMO
This work investigates whether inclusion of the low-frequency components of heart sounds can increase the accuracy, sensitivity and specificity of diagnosis of cardiovascular disorders. We standardized the measurement method to minimize changes in signal characteristics. We used the Continuous Wavelet Transform to analyze changing frequency characteristics over time and to allocate frequencies appropriately between the low-frequency and audible frequency bands. We used a Convolutional Neural Network (CNN) and deep-learning (DL) for image classification, and a CNN equipped with long short-term memory to enable sequential feature extraction. The accuracy of the learning model was validated using the PhysioNet 2016 CinC dataset, then we used our collected dataset to show that incorporating low-frequency components in the dataset increased the DL model's accuracy by 2% and sensitivity by 4%. Furthermore, the LSTM layer was 0.8% more accurate than the dense layer.
Assuntos
Ruídos Cardíacos , Redes Neurais de Computação , Fonocardiografia/métodos , Humanos , Ruídos Cardíacos/fisiologia , Aprendizado Profundo , Masculino , Análise de Ondaletas , Feminino , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/fisiopatologia , Adulto , Processamento de Sinais Assistido por ComputadorRESUMO
A stepped-plate transducer (SPT) uses an extensive radiating plate to produce highly-directional ultrasound beams. In this paper, we present an improved analytical model for designing the polymer-composite stepped-plate transducer (PCSPT). The polymer-composite features the lightweight and flexible properties, and there can be little change in the resonant frequency and mode shape when the steps are attached. With the outstanding merit, it is feasible to construct SPTs with polymer-composite steps without taking the steps into consideration. The modified Mindlin plate theory (MMPT) is applied to improve the accuracy in the equivalent circuit model (ECM) that is used to predict the high-frequency vibratory responses. Our analytical model can be used to design well-tuned SPTs to achieve the desired dynamic responses such as resonant frequencies, mode shape and bandwidth for various high-power ultrasonic applications. We use several numerical design examples to illustrate that the design of the transducer can be accomplished without analyzing the sophisticated stepped-plate's behavior. We also perform a series of experiments to verify that the PCSPT is capable of functioning as a high-power ultrasonic transducer.
RESUMO
Electrospinning is a low-cost and straightforward method for producing various types of polymers in micro/nanofiber form. Among the various types of polymers, electrospun piezoelectric polymers have many potential applications. In this study, a new type of functional microfiber composed of poly(γ-benzyl-α,L-glutamate) (PBLG) and poly(vinylidene fluoride) (PVDF) with significantly enhanced electromechanical properties has been reported. Recently reported electrospun PBLG fibers exhibit polarity along the axial direction, while electrospun PVDF fibers have the highest net dipole moment in the transverse direction. Hence, a combination of PBLG and PVDF as a core-shell structure has been investigated in the present work. On polarization under a high voltage, enhancement in the net dipole moment in each material and the intramolecular conformation was observed. The piezoelectric coefficient of the electrospun PBLG/PVDF core-shell fibers was measured to be up to 68 pC N-1 (d33), and the voltage generation under longitudinal extension was 400 mVpp (peak-to-peak) at a frequency of 60 Hz, which is better than that of the electrospun homopolymer fibers. Such new types of functional materials can be used in various applications, such as sensors, actuators, smart materials, implantable biosensors, biomedical engineering devices, and energy harvesting devices.
RESUMO
Auditory sensors have shortcomings with respect to not only personalization with wearability and portability but also detecting a human voice clearly in a noisy environment or when a mask covers the mouth. In this work, an electret-powered and hole-patterned polymer diaphragm is exploited into a skin-attachable auditory sensor. The optimized charged electret diaphragm induces a voltage bias of >400 V against the counter electrode, which reduces the necessity of a bulky power source and enables the capacitive sensor to show high sensitivity (2.2 V Pa-1 ) with incorporation of an elastomer nanodroplet seismic mass. The sophisticated capacitive structure with low mechanical damping enables a flat frequency response (80-3000 Hz) and good linearity (50-80 dBSPL ). The hole-patterned electret diaphragms help the skin-attachable sensor detect only neck-skin vibration rather than dynamic air pressure, enabling a person's voice to be detected in a harsh acoustic environment. The sensor operates reliably even in the presence of surrounding noise and when the user is wearing a gas mask. Therefore, the sensor shows strong potential of a communication tool for disaster response and quarantine activities, and of diagnosis tool for vocal healthcare applications such as cough monitoring and voice dosimetry.
Assuntos
Acústica , Pele , Elastômeros , Eletrodos , Humanos , Polímeros/análise , Pele/químicaRESUMO
Wearable auditory sensors are critical in user-friendly sound-recognition systems for smart human-machine interaction and the Internet of Things. However, previously reported wearable sensors have limited sound-sensing quality as a consequence of a poor frequency response and a narrow acoustic-pressure range. Here, a skin-attachable acoustic sensor is presented that has higher sensing accuracy in wider auditory field than human ears, with flat frequency response (15-10â¯000 Hz) and a good range of linearity (29-134 dBSPL ) as well as high conformality to flexible surfaces and human skin. This high sound-sensing quality is achieved by exploiting the low residual stress and high processability of polymer materials in a diaphragm structure designed using acousto-mechano-electric modeling. Thus, this acoustic sensor shows high acoustic fidelity by sensing human-audible sounds, even loud sounds and low-frequency sounds that human ears cannot detect without distorting them. The polymer-based ultrasmall (<9 mm2 ) and thin sensor maintains sound-detection quality on flexible substrates and in a wide temperature range (25 to 90 °C). The acoustic sensor shows a significant potential of auditory electronic skin, by recognizing voice successfully when the sensor attached on human skin is connected to a commercial mobile device running the latest artificial intelligence assistant.
Assuntos
Inteligência Artificial , Dispositivos Eletrônicos Vestíveis , Acústica , Humanos , Polímeros , PeleRESUMO
We investigated the adsorption and desorption of CO(2) on activated carbon using piezoelectric microcantilevers. After coating the free end of a cantilever with activated carbon, variations in the resonance frequency of the cantilever were measured as a function of CO(2) pressure, which is related to mass changes due to the adsorption or desorption of CO(2). The pressure-dependent viscous damping effects were compensated in the calculation of the CO(2) adsorption capacity of the activated carbon by comparing the frequency differences between the coated and uncoated cantilevers. The mass sensitivity of the piezoelectric cantilever was found to be better than 1 pg. The fractional coverage of CO(2) agreed with a Langmuir adsorption isotherm, indicating that a submonolayer of adsorbed CO(2) occurred on the surface of the activated carbon under the experimental conditions. The heat of adsorption was determined using the Clausius-Clapeyron relation and the fractional coverage of CO(2) at various temperatures and pressures.
RESUMO
We report on the importance of considering manufacturing inaccuracies in underwater acoustic projectors by elucidating how small variations affect the response characteristics of a projector array in the presence of mutual-loading effects. A wave-based distributed mechanical model accurately calculates the changes arising from small variations, so rapid changes occurring in the vicinity of the transducer resonance can be simulated. The results showed the effects of mutual loading between projector units and confirmed that the changes can be drastically intensified in the presence of manufacturing inaccuracies. A voltage adjustment method to compensate for these changes is also demonstrated as a solution. This framework could guide the design of projector arrays in sound navigation and ranging (SONAR) systems for a variety of applications and, in particular, may contribute significantly to determining manufacturing tolerances.
RESUMO
We report recent improvements of the tip-on-gate of field-effect-transistor (ToGoFET) probe used for capacitive measurement. Probe structure, fabrication, and signal processing were modified. The inbuilt metal-oxide-semiconductor field-effect-transistor (MOSFET) was redesigned to ensure reliable probe operation. Fabrication was based on the standard complementary metal-oxide-semiconductor (CMOS) process, and trench formation and the channel definition were modified. Demodulation of the amplitude-modulated drain current was varied, enhancing the signal-to-noise ratio. The I-V characteristics of the inbuilt MOSFET reflect the design and fabrication modifications, and measurement of a buried electrode revealed improved ToGoFET imaging performance. The minimum measurable value was enhanced 20-fold.
RESUMO
Although an air-backed thin plate is an effective sound receiver structure, it is easily damaged via pressure unbalance caused by external hydrostatic pressure. To overcome this difficulty, a simple pressure-balancing module is proposed. Despite its small size and relative simplicity, with proper design and operation, micro-channel structure provides a solution to the pressure-balancing problem. If the channel size is sufficiently small, the gas-liquid interface may move back and forth without breach by the hydrostatic pressure since the surface tension can retain the interface surface continuously. One input port of the device is opened to an intermediate liquid, while the other port is connected to the air-backing chamber. As the hydrostatic pressure increases, the liquid in the micro-channel compresses the air, and the pressure in the backing chamber is then equalized to match the external hydrostatic pressure. To validate the performance of the proposed mechanism, a micro-channel prototype is designed and integrated with the piezoelectric micro-machined flexural sensor developed in our previous work. The working principle of the mechanism is experimentally verified. In addition, the effect of hydrostatic pressure on receiving sensitivity is evaluated and compared with predicted behavior.
Assuntos
Acústica/instrumentação , Som , Transdutores de Pressão , Ar , Desenho de Equipamento , Pressão Hidrostática , Miniaturização , Modelos Teóricos , Movimento (Física) , Reprodutibilidade dos Testes , Espectrografia do SomRESUMO
A micro-machined underwater acoustic receiver that utilizes the flexural vibration mode of a silicon thin plate and piezoelectric transduction material was investigated. In particular, air was used as the backing material for the hydrophone in order to improve sensitivity in the audible frequency range. To evaluate the effects of air backing on receiving sensitivity, a transduction model incorporating mechanical/electrical/acoustical design parameters was used in designing a piezoelectric micro-machined hydrophone. The sensitivity and displacement responses of the sensor were simulated using the model for air backing and water backing cases, and the benefit of using air backing to enhance sensitivity was confirmed. The micro-machined piezoelectric transducer was fabricated, assembled in the shape of a hydrophone, and tested to ascertain its characteristics as an underwater sensor. These characteristics, such as frequency response and sensitivity, were measured and compared with the simulated results.