Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Tissue Res ; 358(1): 203-16, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24992927

RESUMO

Differentiation of resident multipotent vascular stem cells (MVSCs) or de-differentiation of vascular smooth muscle cells (vSMCs) might be responsible for the SMC phenotype that plays a major role in vascular diseases such as arteriosclerosis and restenosis. We examined vSMCs from three different species (rat, murine and bovine) to establish whether they exhibit neural stem cell characteristics typical of MVSCs. We determined their SMC differentiation, neural stem cell marker expression and multipotency following induction in vitro by using immunocytochemistry, confocal microscopy, fluorescence-activated cell sorting analysis and quantitative real-time polymerase chain reaction. MVSCs isolated from rat aortic explants, enzymatically dispersed rat SMCs and rat bone-marrow-derived mesenchymal stem cells served as controls. Murine carotid artery lysates and primary rat aortic vSMCs were both myosin-heavy-chain-positive but weakly expressed the neural crest stem cell marker, Sox10. Each vSMC line examined expressed SMC differentiation markers (smooth muscle α-actin, myosin heavy chain and calponin), neural crest stem cell markers (Sox10(+), Sox17(+)) and a glia marker (S100ß(+)). Serum deprivation significantly increased calponin and myosin heavy chain expression and decreased stem cell marker expression, when compared with serum-rich conditions. vSMCs did not differentiate to adipocytes or osteoblasts following adipogenic or osteogenic inductive stimulation, respectively, or respond to transforming growth factor-ß1 or Notch following γ-secretase inhibition. Thus, vascular SMCs in culture express neural stem cell markers typical of MVSCs, concomitant with SMC differentiation markers, but do not retain their multipotency. The ultimate origin of these cells might have important implications for their use in investigations of vascular proliferative disease in vitro.


Assuntos
Células da Medula Óssea/metabolismo , Artérias Carótidas/metabolismo , Células-Tronco Multipotentes/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Antígenos de Diferenciação/metabolismo , Células da Medula Óssea/citologia , Artérias Carótidas/citologia , Linhagem Celular , Camundongos , Células-Tronco Multipotentes/citologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Ratos
2.
Stem Cells Int ; 2015: 468428, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26064136

RESUMO

The Hedgehog pathway is a pivotal morphogenic driver during embryonic development and a key regulator of adult stem cell self-renewal. The discovery of resident multipotent vascular stem cells and adventitial progenitors within the vessel wall has transformed our understanding of the origin of medial and neointimal vascular smooth muscle cells (SMCs) during vessel repair in response to injury, lesion formation, and overall disease progression. This review highlights the importance of components of the Hh and Notch signalling pathways within the medial and adventitial regions of adult vessels, their recapitulation following vascular injury and disease progression, and their putative role in the maintenance and differentiation of resident vascular stem cells to vascular lineages from discrete niches within the vessel wall.

3.
Vasc Cell ; 6(1): 6, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24628920

RESUMO

BACKGROUND: The A10 and A7r5 cell lines derived from the thoracic aorta of embryonic rat are widely used as models of non-differentiated, neonatal and neointimal vascular smooth muscle cells in culture. The recent discovery of resident multipotent vascular stem cells within the vessel wall has necessitated the identity and origin of these vascular cells be revisited. In this context, we examined A10 and A7r5 cell lines to establish the similarities and differences between these cell lines and multipotent vascular stem cells isolated from adult rat aortas by determining their differentiation state, stem cell marker expression and their multipotency potential in vitro. METHODS: Vascular smooth muscle cell differentiation markers (alpha-actin, myosin heavy chain, calponin) and stem cell marker expression (Sox10, Sox17 and S100ß) were assessed using immunocytochemistry, confocal microscopy, FACS analysis and real-time quantitative PCR. RESULTS: Both A10 and A7r5 expressed vascular smooth muscle differentiation, markers, smooth muscle alpha - actin, smooth muscle myosin heavy chain and calponin. In parallel analysis, multipotent vascular stem cells isolated from rat aortic explants were immunocytochemically myosin heavy chain negative but positive for the neural stem cell markers Sox10+, a neural crest marker, Sox17+ the endoderm marker, and the glia marker, S100ß+. This multipotent vascular stem cell marker profile was detected in both embryonic vascular cell lines in addition to the adventitial progenitor stem cell marker, stem cell antigen-1, Sca1+. Serum deprivation resulted in a significant increase in stem cell and smooth muscle cell differentiation marker expression, when compared to serum treated cells. Both cell types exhibited weak multipotency following adipocyte inductive stimulation. Moreover, Notch signaling blockade following γ-secretase inhibition with DAPT enhanced the expression of both vascular smooth muscle and stem cell markers. CONCLUSIONS: We conclude that A10 and A7r5 cells share similar neural stem cell markers to both multipotent vascular stem cells and adventitial progenitors that are indicative of neointimal stem-derived smooth muscle cells. This may have important implications for their use in examining vascular contractile and proliferative phenotypes in vitro.

4.
Int J Vasc Med ; 2012: 641917, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23133757

RESUMO

ABO blood groups have been associated with various disease phenotypes, particularly cardiovascular diseases. Cardiovascular diseases are the most common causes of death in developed countries and their prevalence rate is rapidly growing in developing countries. There have been substantial historical associations between non-O blood group status and an increase in some cardiovascular disorders. Recent GWASs have identified ABO as a locus for thrombosis, myocardial infarction, and multiple cardiovascular risk biomarkers, refocusing attention on mechanisms and potential for clinical advances. As we highlight in this paper, more recent work is beginning to probe the molecular basis of the disease associations observed in these observational studies. Advances in our understanding of the physiologic importance of various endothelial and platelet-derived circulating glycoproteins are elucidating the mechanisms through which the ABO blood group may determine overall cardiovascular disease risk. The role of blood group antigens in the pathogenesis of various cardiovascular disorders remains a fascinating subject with potential to lead to novel therapeutics and prognostics and to reduce the global burden of cardiovascular diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA