Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Immunity ; 51(1): 141-154.e6, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31315032

RESUMO

The VH1-2 restricted VRC01-class of antibodies targeting the HIV envelope CD4 binding site are a major focus of HIV vaccine strategies. However, a detailed analysis of VRC01-class antibody development has been limited by the rare nature of these responses during natural infection and the lack of longitudinal sampling of such responses. To inform vaccine strategies, we mapped the development of a VRC01-class antibody lineage (PCIN63) in the subtype C infected IAVI Protocol C neutralizer PC063. PCIN63 monoclonal antibodies had the hallmark VRC01-class features and demonstrated neutralization breadth similar to the prototype VRC01 antibody, but were 2- to 3-fold less mutated. Maturation occurred rapidly within ∼24 months of emergence of the lineage and somatic hypermutations accumulated at key contact residues. This longitudinal study of broadly neutralizing VRC01-class antibody lineage reveals early binding to the N276-glycan during affinity maturation, which may have implications for vaccine design.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/metabolismo , Anticorpos Amplamente Neutralizantes/metabolismo , Anticorpos Anti-HIV/metabolismo , Infecções por HIV/imunologia , HIV-1/fisiologia , Vacinas contra a AIDS/genética , Sequência de Aminoácidos , Anticorpos Monoclonais/genética , Anticorpos Neutralizantes/genética , Afinidade de Anticorpos , Linfócitos B/imunologia , Anticorpos Amplamente Neutralizantes/genética , Antígenos CD4/metabolismo , Regiões Determinantes de Complementaridade/genética , Anticorpos Anti-HIV/genética , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/metabolismo , Humanos , Polissacarídeos/metabolismo , Ligação Proteica
2.
Nature ; 602(7898): 654-656, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35016196

RESUMO

The emergence of the SARS-CoV-2 variant of concern Omicron (Pango lineage B.1.1.529), first identified in Botswana and South Africa, may compromise vaccine effectiveness and lead to re-infections1. Here we investigated Omicron escape from neutralization by antibodies from South African individuals vaccinated with Pfizer BNT162b2. We used blood samples taken soon after vaccination from individuals who were vaccinated and previously infected with SARS-CoV-2 or vaccinated with no evidence of previous infection. We isolated and sequence-confirmed live Omicron virus from an infected person and observed that Omicron requires the angiotensin-converting enzyme 2 (ACE2) receptor to infect cells. We compared plasma neutralization of Omicron relative to an ancestral SARS-CoV-2 strain and found that neutralization of ancestral virus was much higher in infected and vaccinated individuals compared with the vaccinated-only participants. However, both groups showed a 22-fold reduction in vaccine-elicited neutralization by the Omicron variant. Participants who were vaccinated and had previously been infected exhibited residual neutralization of Omicron similar to the level of neutralization of the ancestral virus observed in the vaccination-only group. These data support the notion that reasonable protection against Omicron may be maintained using vaccination approaches.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacina BNT162/imunologia , Evasão da Resposta Imune/imunologia , Testes de Neutralização , SARS-CoV-2/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Humanos , Mutação , SARS-CoV-2/classificação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
3.
Nature ; 607(7918): 356-359, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35523247

RESUMO

The extent to which Omicron infection1-9, with or without previous vaccination, elicits protection against the previously dominant Delta (B.1.617.2) variant is unclear. Here we measured the neutralization capacity against variants of severe acute respiratory syndrome coronavirus 2 in 39 individuals in South Africa infected with the Omicron sublineage BA.1 starting at a median of 6 (interquartile range 3-9) days post symptom onset and continuing until last follow-up sample available, a median of 23 (interquartile range 19-27) days post symptoms to allow BA.1-elicited neutralizing immunity time to develop. Fifteen participants were vaccinated with Pfizer's BNT162b2 or Johnson & Johnson's Ad26.CoV2.S and had BA.1 breakthrough infections, and 24 were unvaccinated. BA.1 neutralization increased from a geometric mean 50% focus reduction neutralization test titre of 42 at enrolment to 575 at the last follow-up time point (13.6-fold) in vaccinated participants and from 46 to 272 (6.0-fold) in unvaccinated participants. Delta virus neutralization also increased, from 192 to 1,091 (5.7-fold) in vaccinated participants and from 28 to 91 (3.0-fold) in unvaccinated participants. At the last time point, unvaccinated individuals infected with BA.1 had low absolute levels of neutralization for the non-BA.1 viruses and 2.2-fold lower BA.1 neutralization, 12.0-fold lower Delta neutralization, 9.6-fold lower Beta variant neutralization, 17.9-fold lower ancestral virus neutralization and 4.8-fold lower Omicron sublineage BA.2 neutralization relative to vaccinated individuals infected with BA.1. These results indicate that hybrid immunity formed by vaccination and Omicron BA.1 infection should be protective against Delta and other variants. By contrast, infection with Omicron BA.1 alone offers limited cross-protection despite moderate enhancement.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Proteção Cruzada , SARS-CoV-2 , Vacinação , Ad26COVS1/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacina BNT162/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Proteção Cruzada/imunologia , Humanos , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Vacinação/estatística & dados numéricos
4.
Nature ; 603(7901): 488-492, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35102311

RESUMO

The SARS-CoV-2 Omicron variant (B.1.1.529) has multiple spike protein mutations1,2 that contribute to viral escape from antibody neutralization3-6 and reduce vaccine protection from infection7,8. The extent to which other components of the adaptive response such as T cells may still target Omicron and contribute to protection from severe outcomes is unknown. Here we assessed the ability of T cells to react to Omicron spike protein in participants who were vaccinated with Ad26.CoV2.S or BNT162b2, or unvaccinated convalescent COVID-19 patients (n = 70). Between 70% and 80% of the CD4+ and CD8+ T cell response to spike was maintained across study groups. Moreover, the magnitude of Omicron cross-reactive T cells was similar for Beta (B.1.351) and Delta (B.1.617.2) variants, despite Omicron harbouring considerably more mutations. In patients who were hospitalized with Omicron infections (n = 19), there were comparable T cell responses to ancestral spike, nucleocapsid and membrane proteins to those in patients hospitalized in previous waves dominated by the ancestral, Beta or Delta variants (n = 49). Thus, despite extensive mutations and reduced susceptibility to neutralizing antibodies of Omicron, the majority of T cell responses induced by vaccination or infection cross-recognize the variant. It remains to be determined whether well-preserved T cell immunity to Omicron contributes to protection from severe COVID-19 and is linked to early clinical observations from South Africa and elsewhere9-12.


Assuntos
COVID-19/imunologia , COVID-19/virologia , Reações Cruzadas/imunologia , Imunidade Celular , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T/imunologia , Adulto , Idoso , Vacinas contra COVID-19/imunologia , Convalescença , Hospitalização , Humanos , Pessoa de Meia-Idade , SARS-CoV-2/química , SARS-CoV-2/classificação
5.
Trends Immunol ; 45(7): 511-522, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38890026

RESUMO

The effect of COVID-19 on the high number of immunocompromised people living with HIV-1 (PLWH), particularly in Africa, remains a critical concern. Here, we identify key areas that still require further investigation, by examining COVID-19 vaccine effectiveness, and understanding antibody responses in SARS-CoV-2 infection and vaccination in comparison with people without HIV-1 (PWOH). We also assess the potential impact of pre-existing immunity against endemic human coronaviruses on SARS-CoV-2 responses in these individuals. Lastly, we discuss the consequences of persistent infection in PLWH (or other immunocompromised individuals), including prolonged shedding, increased viral diversity within the host, and the implications on SARS-CoV-2 evolution in Africa.


Assuntos
Anticorpos Antivirais , COVID-19 , Infecções por HIV , HIV-1 , Imunidade Humoral , SARS-CoV-2 , Humanos , COVID-19/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , SARS-CoV-2/imunologia , HIV-1/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , Hospedeiro Imunocomprometido/imunologia
6.
PLoS Pathog ; 20(9): e1012499, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39292703

RESUMO

Broadly reactive antibodies that target sequence-diverse antigens are of interest for vaccine design and monoclonal antibody therapeutic development because they can protect against multiple strains of a virus and provide a barrier to evolution of escape mutants. Using LIBRA-seq (linking B cell receptor to antigen specificity through sequencing) data for the B cell repertoire of an individual chronically infected with human immunodeficiency virus type 1 (HIV-1), we identified a lineage of IgG3 antibodies predicted to bind to HIV-1 Envelope (Env) and influenza A Hemagglutinin (HA). Two lineage members, antibodies 2526 and 546, were confirmed to bind to a large panel of diverse antigens, including several strains of HIV-1 Env, influenza HA, coronavirus (CoV) spike, hepatitis C virus (HCV) E protein, Nipah virus (NiV) F protein, and Langya virus (LayV) F protein. We found that both antibodies bind to complex glycans on the antigenic surfaces. Antibody 2526 targets the stem region of influenza HA and the N-terminal domain (NTD) region of SARS-CoV-2 spike. A crystal structure of 2526 Fab bound to mannose revealed the presence of a glycan-binding pocket on the light chain. Antibody 2526 cross-reacted with antigens from multiple pathogens and displayed no signs of autoreactivity. These features distinguish antibody 2526 from previously described glycan-reactive antibodies. Further study of this antibody class may aid in the selection and engineering of broadly reactive antibody therapeutics and can inform the development of effective vaccines with exceptional breadth of pathogen coverage.


Assuntos
Anticorpos Antivirais , Reações Cruzadas , Imunoglobulina G , Polissacarídeos , Humanos , Polissacarídeos/imunologia , Imunoglobulina G/imunologia , Anticorpos Antivirais/imunologia , SARS-CoV-2/imunologia , HIV-1/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , COVID-19/imunologia , COVID-19/virologia , Anticorpos Monoclonais/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia
7.
Immunity ; 46(5): 762-764, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28514679

RESUMO

An HIV vaccine that elicits broadly neutralizing antibodies, which often have unusual structural features, has not yet been developed. In Immunity this month, Cale et al., 2017 describe how a new mode of binding allows a conventional antibody to infiltrate HIV's armor.


Assuntos
Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Vacinas contra a AIDS/química , Anticorpos Neutralizantes/imunologia , Infecções por HIV/imunologia , Humanos
8.
Immunol Rev ; 310(1): 61-75, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35599324

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), has shifted our paradigms about B cell immunity and the goals of vaccination for respiratory viruses. The development of population immunity, through responses directed to highly immunogenic regions of this virus, has been a strong driving force in the emergence of progressively mutated variants. This review highlights how the strength of the existing global virology and immunology networks built for HIV vaccine research enabled rapid adaptation of techniques, assays, and skill sets, to expeditiously respond to the SARS-CoV-2 pandemic. Allying real-time genomic surveillance to immunological platforms enabled the characterization of immune responses elicited by infection with distinct variants, in sequential epidemic waves, as well as studies of vaccination and hybrid immunity (combination of infection- and vaccination-induced immunity). These studies have shown that consecutive variants of concern have steadily diminished the ability of vaccines to prevent infection, but that increasing levels of hybrid immunity result in higher frequencies of cross-reactive responses. Ultimately, this rapid pivot from HIV to SARS-CoV-2 enabled a depth of understanding of the SARS-CoV-2 antigenic vulnerabilities as population immunity expanded and diversified, providing key insights for future responses to the SARS-CoV-2 pandemic.


Assuntos
COVID-19 , Infecções por HIV , Vacinas Virais , Anticorpos Antivirais , Humanos , SARS-CoV-2 , África do Sul , Vacinação
9.
J Virol ; 98(1): e0147823, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38085509

RESUMO

Consistent elicitation of serum antibody responses that neutralize diverse clades of HIV-1 remains a primary goal of HIV-1 vaccine research. Prior work has defined key features of soluble HIV-1 Envelope (Env) immunogen cocktails that influence the neutralization breadth and potency of multivalent vaccine-elicited antibody responses including the number of Env strains in the regimen. We designed immunization groups that consisted of different numbers of SOSIP Env strains to be used in a cocktail immunization strategy: the smallest cocktail (group 2) consisted of a set of two Env strains, which were a subset of the three Env strains that made up group 3, which, in turn, were a subset of the six Env strains that made up group 4. Serum neutralizing titers were modestly broader in guinea pigs that were immunized with a cocktail of three Envs compared to cocktails of two and six, suggesting that multivalent Env immunization could provide a benefit but may be detrimental when the cocktail size is too large. We then adapted the LIBRA-seq platform for antibody discovery to be compatible with guinea pigs, and isolated several tier 2 neutralizing monoclonal antibodies. Three antibodies isolated from two separate guinea pigs were similar in their gene usage and CDR3s, establishing evidence for a guinea pig public clonotype elicited through vaccination. Taken together, this work investigated multivalent HIV-1 Env immunization strategies and provides a novel methodology for screening guinea pig B cell receptor antigen specificity at a high-throughput level using LIBRA-seq.IMPORTANCEMultivalent vaccination with soluble Env immunogens is at the forefront of HIV-1 vaccination strategies but little is known about the influence of the number of Env strains included in vaccine cocktails. Our results suggest that adding more strains is sometimes beneficial but may be detrimental when the number of strains is too high. In addition, we adapted the LIBRA-seq platform to be compatible with guinea pig samples and isolated several tier 2 neutralizing monoclonal antibodies, some of which share V and J gene usage and >70% CDR3 identity, thus establishing the existence of public clonotypes in guinea pigs elicited through vaccination.


Assuntos
Vacinas contra a AIDS , Formação de Anticorpos , HIV-1 , Animais , Cobaias , Vacinas contra a AIDS/imunologia , Anticorpos Monoclonais , Anticorpos Neutralizantes , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Anticorpos Anti-HIV , Infecções por HIV/imunologia , HIV-1/genética
10.
J Virol ; 98(7): e0067824, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38953380

RESUMO

SARS-CoV-2 variants of concern (VOCs) differentially trigger neutralizing and antibody-dependent cellular cytotoxic (ADCC) antibodies with variable cross-reactivity. Omicron BA.4/5 was approved for inclusion in bivalent vaccination boosters, and therefore the antigenic profile of antibodies elicited by this variant is critical to understand. Here, we investigate the ability of BA.4/5-elicited antibodies following the first documented (primary) infection (n = 13) or breakthrough infection after vaccination (n = 9) to mediate neutralization and FcγRIIIa signaling across multiple SARS-CoV-2 variants including XBB.1.5 and BQ.1. Using a pseudovirus neutralization assay and a FcγRIIIa crosslinking assay to measure ADCC potential, we show that unlike SARS-CoV-2 Omicron BA.1, BA.4/5 infection triggers highly cross-reactive functional antibodies. Cross-reactivity was observed both in the absence of prior vaccination and in breakthrough infections following vaccination. However, BQ.1 and XBB.1.5 neutralization and FcγRIIIa signaling were significantly compromised compared to other VOCs, regardless of prior vaccination status. BA.4/5 triggered FcγRIIIa signaling was significantly more resilient against VOCs (<10-fold decrease in magnitude) compared to neutralization (10- to 100-fold decrease). Overall, this study shows that BA.4/5 triggered antibodies are highly cross-reactive compared to those triggered by other variants. Although this is consistent with enhanced neutralization and FcγRIIIa signaling breadth of BA.4/5 vaccine boosters, the reduced activity against XBB.1.5 supports the need to update vaccines with XBB sublineage immunogens to provide adequate coverage of these highly antibody evasive variants. IMPORTANCE: The continued evolution of SARS-CoV-2 has resulted in a number of variants of concern. Of these, the Omicron sublineage is the most immune evasive. Within Omicron, the BA.4/5 sublineage drove the fifth wave of infection in South Africa prior to becoming the dominant variant globally. As a result this spike sequence was approved as part of a bivalent vaccine booster, and rolled out worldwide. We aimed to understand the cross-reactivity of neutralizing and Fc mediated cytotoxic functions elicited by BA.4/5 infection following infection or breakthrough infection. We find that, in contrast to BA.1 which triggered fairly strain-specific antibodies, BA.4/5 triggered antibodies that are highly cross-reactive for neutralization and antibody-dependent cellular cytotoxicity potential. Despite this cross-reactivity, these antibodies are compromised against highly resistant variants such as XBB.1.5 and BQ.1. This suggests that next-generation vaccines will require XBB sublineage immunogens in order to protect against these evasive variants.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Citotoxicidade Celular Dependente de Anticorpos , COVID-19 , Reações Cruzadas , Receptores de IgG , SARS-CoV-2 , Transdução de Sinais , Receptores de IgG/imunologia , Humanos , Anticorpos Neutralizantes/imunologia , Reações Cruzadas/imunologia , Anticorpos Antivirais/imunologia , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Transdução de Sinais/imunologia , Testes de Neutralização , Vacinas contra COVID-19/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia
11.
PLoS Pathog ; 19(11): e1011772, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37943890

RESUMO

The impact of previous SARS-CoV-2 infection on the durability of Ad26.COV2.S vaccine-elicited responses, and the effect of homologous boosting has not been well explored. We followed a cohort of healthcare workers for 6 months after receiving the Ad26.COV2.S vaccine and a further one month after they received an Ad26.COV2.S booster dose. We assessed longitudinal spike-specific antibody and T cell responses in individuals who had never had SARS-CoV-2 infection, compared to those who were infected with either the D614G or Beta variants prior to vaccination. Antibody and T cell responses elicited by the primary dose were durable against several variants of concern over the 6 month follow-up period, regardless of infection history. However, at 6 months after first vaccination, antibody binding, neutralization and ADCC were as much as 59-fold higher in individuals with hybrid immunity compared to those with no prior infection. Antibody cross-reactivity profiles of the previously infected groups were similar at 6 months, unlike at earlier time points, suggesting that the effect of immune imprinting diminishes by 6 months. Importantly, an Ad26.COV2.S booster dose increased the magnitude of the antibody response in individuals with no prior infection to similar levels as those with previous infection. The magnitude of spike T cell responses and proportion of T cell responders remained stable after homologous boosting, concomitant with a significant increase in long-lived early differentiated CD4 memory T cells. Thus, these data highlight that multiple antigen exposures, whether through infection and vaccination or vaccination alone, result in similar boosts after Ad26.COV2.S vaccination.


Assuntos
Ad26COVS1 , COVID-19 , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Anticorpos , Vacinação , Imunidade Adaptativa , Anticorpos Antivirais , Anticorpos Neutralizantes , Imunidade Humoral
12.
PLoS Pathog ; 19(6): e1011469, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37384759

RESUMO

The VRC01 Antibody Mediated Prevention (AMP) efficacy trials conducted between 2016 and 2020 showed for the first time that passively administered broadly neutralizing antibodies (bnAbs) could prevent HIV-1 acquisition against bnAb-sensitive viruses. HIV-1 viruses isolated from AMP participants who acquired infection during the study in the sub-Saharan African (HVTN 703/HPTN 081) and the Americas/European (HVTN 704/HPTN 085) trials represent a panel of currently circulating strains of HIV-1 and offer a unique opportunity to investigate the sensitivity of the virus to broadly neutralizing antibodies (bnAbs) being considered for clinical development. Pseudoviruses were constructed using envelope sequences from 218 individuals. The majority of viruses identified were clade B and C; with clades A, D, F and G and recombinants AC and BF detected at lower frequencies. We tested eight bnAbs in clinical development (VRC01, VRC07-523LS, 3BNC117, CAP256.25, PGDM1400, PGT121, 10-1074 and 10E8v4) for neutralization against all AMP placebo viruses (n = 76). Compared to older clade C viruses (1998-2010), the HVTN703/HPTN081 clade C viruses showed increased resistance to VRC07-523LS and CAP256.25. At a concentration of 1µg/ml (IC80), predictive modeling identified the triple combination of V3/V2-glycan/CD4bs-targeting bnAbs (10-1074/PGDM1400/VRC07-523LS) as the best against clade C viruses and a combination of MPER/V3/CD4bs-targeting bnAbs (10E8v4/10-1074/VRC07-523LS) as the best against clade B viruses, due to low coverage of V2-glycan directed bnAbs against clade B viruses. Overall, the AMP placebo viruses represent a valuable resource for defining the sensitivity of contemporaneous circulating viral strains to bnAbs and highlight the need to update reference panels regularly. Our data also suggests that combining bnAbs in passive immunization trials would improve coverage of global viruses.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Anticorpos Anti-HIV , Anticorpos Amplamente Neutralizantes , Anticorpos Neutralizantes , Polissacarídeos
13.
J Infect Dis ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743692

RESUMO

BACKGROUND: Several influenza vaccine candidates aim to elicit antibodies against the conserved hemagglutinin stalk domain. Understanding the protective mechanism of these antibodies, which mediate broad neutralization and Fc-mediated functions, following seasonal vaccination is critical. METHODS: Plasma samples were obtained from a subset of pregnant women living with or without HIV-1 enrolled in a randomised trial (138 trivalent inactivated vaccine [TIV] and 145 placebo recipients). Twenty-three influenza-illness cases were confirmed within 6 months postpartum. We measured H1 stalk-specific antibody-dependent cellular phagocytosis (ADCP), complement deposition (ADCD) and cellular cytotoxicity (ADCC) at enrolment and 1-month post-vaccination. The association between these Fc-mediated functions and protection against influenza-illness following vaccination was examined using multiple logistic regression analysis and risk reduction thresholds were defined by the score associated with the lowest odds of influenza-illness. RESULTS: Amongst TIV and placebo recipients, lower H1 stalk-specific ADCP and ADCD activity was detected for participants with confirmed influenza compared with individuals without confirmed influenza-illness 1-month post-vaccination. Pre-existing ADCP scores ≥250 reduced the odds of A/H1N1 infection (odds ratio 0.11; p=0.01) with an 83% likelihood of risk reduction. Following TIV, ADCD scores of ≥25 and ≥15 significantly reduced the odds against A/H1N1 (0.10; p=0.01) and non-group 1 (0.06; p=0.0004) influenza virus infections, respectively. These ADCD scores were associated with >84% likelihood of risk reduction. H1 stalk-specific ADCC potential was not associated with protection against influenza-illness. CONCLUSION: H1 stalk-specific ADCD correlates with protection against influenza-illness following influenza vaccination during pregnancy. These findings provide insight into the protective mechanisms of HA stalk antibodies.

14.
Clin Immunol ; 266: 110323, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39029640

RESUMO

The African continent reported the least number of COVID-19 cases and deaths of all the continents, although the exact reasons for this are still unclear. In addition, little is known about the immunological profiles associated with COVID-19 mortality in Africa. The present study compared clinical and immunological parameters, as well as treatment outcomes in patients admitted with COVID-19 in Pretoria, South Africa, to determine if these parameters correlated with mortality in this population. The in-hospital mortality rate for the cohort was 15.79%. The mortality rate in people living with HIV (PLWH) was 10.81% and 17.16% in people without HIV (p = 0.395). No differences in age (p = 0.099), gender (p = 0.127) or comorbidities were found between deceased patients and those who survived. All four of the PLWH who died had a CD4+ T-cell count <200 cells/mm3, a significantly higher HIV viral load than those who survived (p = 0.009), and none were receiving antiretroviral therapy. Seven of 174 (4%) patients had evidence of auto-antibodies neutralizing Type 1 interferons (IFNs). Two of the them died, and their presence was significantly associated with mortality (p = 0.042). In the adjusted model, the only clinical parameters associated with mortality were: higher fraction of inspired oxygen (FiO2) (OR: 3.308, p = 0.011) indicating a greater need for oxygen, high creatinine (OR: 4.424, p = 0.001) and lower platelet counts (OR: 0.203, p = 0.009), possibly secondary to immunothrombosis. Overall, expression of the co-receptor CD86 (p = 0.021) on monocytes and percentages of CD8+ effector memory 2 T-cells (OR: 0.45, p = 0.027) was lower in deceased patients. Decreased CD86 expression impairs the development and survival of effector memory T-cells. Deceased patients had higher concentrations of RANTES (p = 0.003), eotaxin (p = 0.003) and interleukin (IL)-8 (p < 0.001), all involved in the activation and recruitment of innate immune cells. They also had lower concentrations of transforming growth factor (TGF)-ß1 (p = 0.40), indicating an impaired anti-inflammatory response. The immunological profile associated with COVID-19 mortality in South Africa points to the role of aberrate innate immune responses.


Assuntos
COVID-19 , Infecções por HIV , Imunidade Inata , SARS-CoV-2 , Humanos , COVID-19/imunologia , COVID-19/mortalidade , África do Sul/epidemiologia , Masculino , Feminino , Imunidade Inata/imunologia , Infecções por HIV/imunologia , Infecções por HIV/mortalidade , Infecções por HIV/tratamento farmacológico , Pessoa de Meia-Idade , Adulto , SARS-CoV-2/imunologia , Contagem de Linfócito CD4 , Mortalidade Hospitalar , Carga Viral , Idoso
15.
Clin Immunol ; 259: 109877, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38141746

RESUMO

Multisystem inflammatory syndrome in children (MIS-C) is a severe, hyperinflammatory disease that occurs after exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The underlying immune pathology of MIS-C is incompletely understood, with limited data comparing MIS-C to clinically similar paediatric febrile diseases at presentation. SARS-CoV-2-specific T cell responses have not been compared in these groups to assess whether there is a T cell profile unique to MIS-C. In this study, we measured inflammatory cytokine concentration and SARS-CoV-2-specific humoral immunity and T cell responses in children with fever and suspected MIS-C at presentation (n = 83) where MIS-C was ultimately confirmed (n = 58) or another diagnosis was made (n = 25) and healthy children (n = 91). Children with confirmed MIS-C exhibited distinctly elevated serum IL-10, IL-6, and CRP at presentation. No differences were detected in SARS-CoV-2 spike IgG serum concentration, neutralisation capacity, antibody dependant cellular phagocytosis, antibody dependant cellular cytotoxicity or SARS-CoV-2-specific T cell frequency between the groups. Healthy SARS-CoV-2 seropositive children had a higher proportion of polyfunctional SARS-CoV-2-specific CD4+ T cells compared to children with MIS-C and those with other inflammatory or infectious diagnoses, who both presented a largely monofunctional SARS-CoV-2-specific CD4+ T cell profile. Treatment with steroids and/or intravenous immunoglobulins resulted in rapid reduction of inflammatory cytokines but did not affect the SARS-CoV-2-specific IgG or CD4+ T cell responses in MIS-C. In these data, MIS-C had a unique cytokine profile but not a unique SARS-CoV-2 specific humoral or T cell cytokine response.


Assuntos
COVID-19 , Doenças do Tecido Conjuntivo , Síndrome de Resposta Inflamatória Sistêmica , Humanos , Criança , SARS-CoV-2 , Citocinas , Imunoglobulina G , Febre , Anticorpos Antivirais
16.
N Engl J Med ; 384(20): 1885-1898, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33725432

RESUMO

BACKGROUND: Assessment of the safety and efficacy of vaccines against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in different populations is essential, as is investigation of the efficacy of the vaccines against emerging SARS-CoV-2 variants of concern, including the B.1.351 (501Y.V2) variant first identified in South Africa. METHODS: We conducted a multicenter, double-blind, randomized, controlled trial to assess the safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) in people not infected with the human immunodeficiency virus (HIV) in South Africa. Participants 18 to less than 65 years of age were assigned in a 1:1 ratio to receive two doses of vaccine containing 5×1010 viral particles or placebo (0.9% sodium chloride solution) 21 to 35 days apart. Serum samples obtained from 25 participants after the second dose were tested by pseudovirus and live-virus neutralization assays against the original D614G virus and the B.1.351 variant. The primary end points were safety and efficacy of the vaccine against laboratory-confirmed symptomatic coronavirus 2019 illness (Covid-19) more than 14 days after the second dose. RESULTS: Between June 24 and November 9, 2020, we enrolled 2026 HIV-negative adults (median age, 30 years); 1010 and 1011 participants received at least one dose of placebo or vaccine, respectively. Both the pseudovirus and the live-virus neutralization assays showed greater resistance to the B.1.351 variant in serum samples obtained from vaccine recipients than in samples from placebo recipients. In the primary end-point analysis, mild-to-moderate Covid-19 developed in 23 of 717 placebo recipients (3.2%) and in 19 of 750 vaccine recipients (2.5%), for an efficacy of 21.9% (95% confidence interval [CI], -49.9 to 59.8). Among the 42 participants with Covid-19, 39 cases (95.1% of 41 with sequencing data) were caused by the B.1.351 variant; vaccine efficacy against this variant, analyzed as a secondary end point, was 10.4% (95% CI, -76.8 to 54.8). The incidence of serious adverse events was balanced between the vaccine and placebo groups. CONCLUSIONS: A two-dose regimen of the ChAdOx1 nCoV-19 vaccine did not show protection against mild-to-moderate Covid-19 due to the B.1.351 variant. (Funded by the Bill and Melinda Gates Foundation and others; ClinicalTrials.gov number, NCT04444674; Pan African Clinical Trials Registry number, PACTR202006922165132).


Assuntos
Anticorpos Neutralizantes/sangue , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Imunogenicidade da Vacina , SARS-CoV-2 , Adenoviridae , Adolescente , Adulto , Anticorpos Neutralizantes/fisiologia , COVID-19/epidemiologia , COVID-19/imunologia , Teste Sorológico para COVID-19 , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/efeitos adversos , ChAdOx1 nCoV-19 , Método Duplo-Cego , Humanos , Pessoa de Meia-Idade , África do Sul , Linfócitos T/fisiologia , Falha de Tratamento , Potência de Vacina , Adulto Jovem
17.
PLoS Pathog ; 18(9): e1010450, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36054228

RESUMO

Broadly neutralizing antibodies (bNAbs) that target the membrane-proximal external region (MPER) of HIV gp41 envelope, such as 4E10, VRC42.01 and PGZL1, can neutralize >80% of viruses. These three MPER-directed monoclonal antibodies share germline antibody genes (IGHV1-69 and IGKV3-20) and form a bNAb epitope class. Furthermore, convergent evolution within these two lineages towards a 111.2GW111.3 motif in the CDRH3 is known to enhance neutralization potency. We have previously isolated an MPER neutralizing antibody, CAP206-CH12, that uses these same germline heavy and light chain genes but lacks breadth (neutralizing only 6% of heterologous viruses). Longitudinal sequencing of the CAP206-CH12 lineage over three years revealed similar convergent evolution towards 111.2GW111.3 among some lineage members. Mutagenesis of CAP206-CH12 from 111.2GL111.3 to 111.2GW111.3 and the introduction of the double GWGW motif into CAP206-CH12 modestly improved neutralization potency (2.5-3-fold) but did not reach the levels of potency of VRC42.01, 4E10 or PGZL1. To explore the lack of potency/breadth, viral mutagenesis was performed to map the CAP206-CH12 epitope. This indicated that CAP206-CH12 is dependent on D674, a highly variable residue at the solvent-exposed elbow of MPER. In contrast, VRC42.01, PGZL1 and 4E10 were dependent on highly conserved residues (W672, F673, T676, and W680) facing the hydrophobic patch of the MPER. Therefore, while CAP206-CH12, VRC42.01, PGZL1 and 4E10 share germline genes and show some evidence of convergent evolution, their dependence on different amino acids, which impacts orientation of binding to the MPER, result in differences in breadth and potency. These data have implications for the design of HIV vaccines directed at the MPER epitope.


Assuntos
Vacinas contra a AIDS , Infecções por HIV , HIV-1 , Aminoácidos , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Epitopos/química , Epitopos/genética , Anticorpos Anti-HIV , Proteína gp41 do Envelope de HIV , Humanos , Solventes
18.
BMC Infect Dis ; 24(1): 712, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033300

RESUMO

BACKGROUND: The ambitious goal to eliminate new pediatric HIV infections by 2030 requires accelerated prevention strategies in high-risk settings such as South Africa. One approach could be pre-exposure prophylaxis (PrEP) with broadly neutralizing anti-HIV-1 monoclonal antibodies (bNAbs). The aim of our study is to define the optimal dose(s), the ideal combination(s) of bNAbs in terms of potency and breadth, and timing of subcutaneous (SC) administration(s) to prevent breast milk transmission of HIV. METHODS: Two bNAbs, CAP256V2LS and VRC07-523LS, will be assessed in a sequential and randomized phase I, single-site, single-blind, dose-finding trial. We aim to investigate the 28-day safety and pharmacokinetics (PK) profile of incrementally higher doses of these bNAbs in breastfeeding HIV-1 exposed born without HIV neonates alongside standard of care antiretroviral (ARV) medication to prevent (infants) or treat (mothers) HIV infection. The trial design includes 3 steps and 7 arms (1, 2, 3, 4, 5, 6 and 6b) with 8 infants in each arm. The first step will evaluate the safety and PK profile of the bNAbs when given alone as a single subcutaneous (SC) administration at increasing mg/kg body weight doses within 96 h of birth: arms 1, 2 and 3 at doses of 5, 10, and 20 mg/kg of CAP256V2LS, respectively; arms 4 and 5 at doses of 20 and 30 mg/kg of VRC07-523LS, respectively. Step two will evaluate the safety and PK profile of a combination of the two bNAbs administered SC at fixed doses within 96 h of birth. Step three will evaluate the safety and PK profile of the two bNAbs administered SC in combination at fixed doses, after 3 months. Arms 1 and 6 will follow sequential recruitment, whereas randomization will occur sequentially between arms (a) 2 & 4 and (b) 3 & 5. Before each randomization, a safety pause will allow review of safety data of the preceding arms. DISCUSSION: The results of this trial will guide further studies on bNAbs to prevent breast milk transmission of HIV. PROTOCOL VERSION: Version 4.0 dated 15 March 2024. TRIAL REGISTRATION: Pan African Clinical Trial Registry (PACTR): PACTR202205715278722, 21 April 2022; South African National Clinical Trial Registry (SANCTR): DOH-27-062022-6058.


Assuntos
Anticorpos Anti-HIV , Infecções por HIV , HIV-1 , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Fármacos Anti-HIV/farmacocinética , Fármacos Anti-HIV/administração & dosagem , Fármacos Anti-HIV/uso terapêutico , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Aleitamento Materno , Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Amplamente Neutralizantes/administração & dosagem , Ensaios Clínicos Fase I como Assunto , Anticorpos Anti-HIV/administração & dosagem , Infecções por HIV/prevenção & controle , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Infecções por HIV/transmissão , HIV-1/imunologia , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Injeções Subcutâneas , Profilaxia Pré-Exposição/métodos , Método Simples-Cego , África do Sul
19.
J Virol ; 96(10): e0027022, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35510865

RESUMO

Some HIV-infected people develop broadly neutralizing antibodies (bNAbs) that block many diverse, unrelated strains of HIV from infecting target cells and, through passive immunization, protect animals and humans from infection. Therefore, understanding the development of bNAbs and their neutralization can inform the design of an HIV vaccine. Here, we extend our previous studies of the ontogeny of the CAP256-VRC26 V2-targeting bNAb lineage by defining the mutations that confer neutralization to the unmutated common ancestor (CAP256.UCA). Analysis of the sequence of the CAP256.UCA showed that many improbable mutations were located in the third complementarity-determining region of the heavy chain (CDRH3) and the heavy chain framework 3 (FR3). Transferring the CDRH3 from bNAb CAP256.25 (63% breadth and 0.003 µg/mL potency) into the CAP256.UCA introduced breadth and the ability to neutralize emerging viral variants. In addition, we showed that the framework and light chain contributed to potency and that the second CDR of the light chain forms part of the paratope of CAP256.25. Notably, a minimally mutated CAP256 antibody, with 41% of the mutations compared to bNAb CAP256.25, was broader (64% breadth) and more potent (0.39 µg/mL geometric potency) than many unrelated bNAbs. Together, we have identified key regions and mutations that confer breadth and potency in a V2-specific bNAb lineage. These data indicate that immunogens that target affinity maturation to key sites in CAP256-VRC26-like precursors, including the CDRHs and light chain, could rapidly elicit breadth through vaccination. IMPORTANCE A major focus in the search for an HIV vaccine is elucidating the ontogeny of broadly neutralizing antibodies (bNAbs), which prevent HIV infection in vitro and in vivo. The unmutated common ancestors (UCAs) of bNAbs are generally strain specific and acquire breadth through extensive, and sometimes redundant, somatic hypermutation during affinity maturation. We investigated which mutations in the CAP256-VRC26 bNAb lineage conferred neutralization capacity to the UCA. We found that mutations in the antibody heavy and light chains had complementary roles in neutralization breadth and potency, respectively. The heavy chain, particularly the third complementarity-determining region, was responsible for conferring breadth. In addition, previously uninvestigated mutations in the framework also contributed to breadth. Together, approximately half of the mutations in CAP256.25 were necessary for broader and more potent neutralization than many unrelated neutralizing antibodies. Vaccine approaches that promote affinity maturation at key sites could therefore more rapidly produce antibodies with neutralization breadth.


Assuntos
Anticorpos Amplamente Neutralizantes , Anticorpos Anti-HIV , Infecções por HIV , Animais , Anticorpos Amplamente Neutralizantes/genética , Anticorpos Amplamente Neutralizantes/imunologia , Regiões Determinantes de Complementaridade/genética , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1 , Humanos
20.
J Virol ; 96(4): e0193421, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34935437

RESUMO

Broadly neutralizing antibodies (bNAbs) are able to prevent HIV infection following passive administration. Single-chain variable fragments (scFv) may have advantages over IgG as their smaller size permits improved diffusion into mucosal tissues. We have previously shown that scFv of bNAbs retain significant breadth and potency against cell-free viral transmission in a TZM-bl assay. However, scFv have not been tested for their ability to block cell-cell transmission, a model in which full-sized bNAbs lose potency. We tested four scFv (CAP256.25, PGT121, 3BNC117, and 10E8v4) compared to IgG, in free-virus and cell-cell neutralization assays in A3.01 cells, against a panel of seven heterologous viruses. We show that free-virus neutralization titers in the TZM-bl and A3.01 assays were not significantly different and confirm that scFv show a 1- to 32-fold reduction in activity in the cell-free model, compared to IgG. However, whereas IgG shows 3.4- to 19-fold geometric mean potency loss in cell-cell neutralization compared to free-virus transmission, scFv had more comparable activity in the two assays, with only a 1.3- to 2.3-fold reduction. Geometric mean 50% inhibitory concentration (IC50) of scFv for cell-cell transmission ranged from 0.65 µg/mL (10E8v4) to 2.3 µg/mL (3BNC117), with IgG and scFv neutralization showing similar potency against cell-associated transmission. Therefore, despite the reduced activity of scFv in cell-free assays, their retention of activity in the cell-cell format may make scFv useful for the prevention of both modes of transmission in HIV prevention studies. IMPORTANCE Broadly neutralizing antibodies (bNAbs) are a major focus for passive immunization against HIV, with the recently concluded HVTN Antibody Mediated Protection trial providing proof of concept. Most studies focus on cell-free HIV; however, cell-associated virus may play a significant role in HIV infection, pathogenesis, and latency. Single-chain variable fragments (scFv) of antibodies may have increased tissue penetration and reduced immunogenicity. We previously demonstrated that scFv of four HIV-directed bNAbs (CAP256.25, PGT121, 3BNC117, and 10E8v4) retain significant potency and breadth against cell-free HIV. As some bNAbs have been shown to lose potency against cell-associated virus, we investigated the ability of bNAb scFv to neutralize this mode of transmission. We demonstrate that unlike IgG, scFv of bNAbs are able to neutralize cell-free and cell-associated virus with similar potency. These scFv, which show functional activity in the therapeutic range, may therefore be suitable for further development as passive immunity for HIV prevention.


Assuntos
Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Imunização Passiva/métodos , Anticorpos de Cadeia Única/imunologia , Linhagem Celular , Humanos , Imunoglobulina G/imunologia , Concentração Inibidora 50 , Testes de Neutralização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA