Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Biochemistry ; 56(2): 364-375, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-28045498

RESUMO

The EutT enzyme from Salmonella enterica, a member of the family of ATP:cobalt(I) corrinoid adenosyltransferase (ACAT) enzymes, requires a divalent transition metal ion for catalysis, with Fe(II) yielding the highest activity. EutT contains a unique cysteine-rich HX11CCX2C(83) motif (where H and the last C occupy the 67th and 83rd positions, respectively, in the amino acid sequence) not found in other ACATs and employs an unprecedented mechanism for the formation of adenosylcobalamin. Recent kinetic and spectroscopic studies of this enzyme revealed that residues in the HX11CCX2C(83) motif are required for the tight binding of the divalent metal ion and are critical for the formation of a four-coordinate (4c) cob(II)alamin [Co(II)Cbl] intermediate in the catalytic cycle. However, it remained unknown which, if any, of the residues in the HX11CCX2C(83) motif bind the divalent metal ion. To address this issue, we have characterized Co(II)-substituted wild-type EutT (EutTWT/Co) by using electronic absorption, electron paramagnetic resonance, and magnetic circular dichroism (MCD) spectroscopies. Our results indicate that the reduced catalytic activity of EutTWT/Co relative to that of the Fe(II)-containing enzyme arises from the incomplete incorporation of Co(II) ions and, thus, a decrease in the relative population of 4c Co(II)Cbl. Our MCD data for EutTWT/Co also reveal that the Co(II) ions reside in a distorted tetrahedral coordination environment with direct cysteine sulfur ligation. Additional spectroscopic studies of EutT/Co variants possessing a single alanine substitution of either His67, His75, Cys79, Cys80, or Cys83 indicate that Cys80 coordinates to the Co(II) ion, while the additional residues are important for maintaining the structural integrity and/or high affinity of the metal binding site.


Assuntos
Alquil e Aril Transferases/química , Proteínas de Bactérias/química , Cobalto/química , Coenzimas/química , Complexos de Coordenação/química , Cisteína/química , Salmonella enterica/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Alanina/química , Alanina/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cátions Bivalentes , Dicroísmo Circular/métodos , Clonagem Molecular , Cobalto/metabolismo , Cobamidas/química , Cobamidas/metabolismo , Coenzimas/metabolismo , Complexos de Coordenação/metabolismo , Cisteína/metabolismo , Escherichia coli , Expressão Gênica , Histidina/química , Histidina/metabolismo , Ferro/química , Ferro/metabolismo , Mutação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salmonella enterica/enzimologia , Salmonella enterica/genética
3.
Mol Microbiol ; 99(3): 497-511, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26448059

RESUMO

Salmonella enterica catabolizes ethanolamine inside a compartment known as the metabolosome. The ethanolamine utilization (eut) operon of this bacterium encodes all functions needed for the assembly and function of this structure. To date, the roles of EutQ and EutP were not known. Herein we show that both proteins have acetate kinase activity and that EutQ is required during anoxic growth of S. enterica on ethanolamine and tetrathionate. EutP and EutQ-dependent ATP synthesis occurred when enzymes were incubated with ADP, Mg(II) ions and acetyl-phosphate. EutQ and EutP also synthesized acetyl-phosphate from ATP and acetate. Although EutP had acetate kinase activity, ΔeutP strains lacked discernible phenotypes under the conditions where ΔeutQ strains displayed clear phenotypes. The kinetic parameters indicate that EutP is a faster enzyme than EutQ. Our evidence supports the conclusion that EutQ and EutP represent novel classes of acetate kinases. We propose that EutQ is necessary to drive flux through the pathway under physiological conditions, preventing a buildup of acetaldehyde. We also suggest that ATP generated by these enzymes may be used as a substrate for EutT, the ATP-dependent corrinoid adenosyltransferase and for the EutA ethanolamine ammonia-lyase reactivase.


Assuntos
Acetato Quinase/metabolismo , Proteínas de Bactérias/metabolismo , Etanolamina/metabolismo , Salmonella typhimurium/enzimologia , Acetato Quinase/química , Acetato Quinase/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cinética , Salmonella typhimurium/genética , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/metabolismo
4.
J Am Chem Soc ; 138(11): 3694-704, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26886077

RESUMO

EutT from Salmonella enterica is a member of a class of enzymes termed ATP:Co(I)rrinoid adenosyltransferases (ACATs), implicated in the biosynthesis of adenosylcobalamin (AdoCbl). In the presence of cosubstrate ATP, ACATs raise the Co(II)/Co(I) reduction potential of their cob(II)alamin [Co(II)Cbl] substrate by >250 mV via the formation of a unique four-coordinate (4c) Co(II)Cbl species, thereby facilitating the formation of a "supernucleophilic" cob(I)alamin intermediate required for the formation of the AdoCbl product. Previous kinetic studies of EutT revealed the importance of a HX11CCX2C(83) motif for catalytic activity and have led to the proposal that residues in this motif serve as the binding site for a divalent transition metal cofactor [e.g., Fe(II) or Zn(II)]. This motif is absent in other ACAT families, suggesting that EutT employs a distinct mechanism for AdoCbl formation. To assess how metal ion binding to the HX11CCX2C(83) motif affects the relative yield of 4c Co(II)Cbl generated in the EutT active site, we have characterized several enzyme variants by using electronic absorption, magnetic circular dichroism, and electron paramagnetic resonance spectroscopies. Our results indicate that Fe(II) or Zn(II) binding to the HX11CCX2C(83) motif of EutT is required for promoting the formation of 4c Co(II)Cbl. Intriguingly, our spectroscopic data also reveal the presence of an equilibrium between five-coordinate "base-on" and "base-off" Co(II)Cbl species bound to the EutT active site at low ATP concentrations, which shifts in favor of "base-off" Co(II)Cbl in the presence of excess ATP, suggesting that the base-off species serves as a precursor to 4c Co(II)Cbl.


Assuntos
Alquil e Aril Transferases/química , Proteínas de Bactérias/química , Compostos de Cálcio/química , Cobamidas/química , Salmonella enterica/enzimologia , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Alquil e Aril Transferases/metabolismo , Proteínas de Bactérias/metabolismo , Compostos de Cálcio/metabolismo , Domínio Catalítico , Dicroísmo Circular , Cobamidas/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Compostos Ferrosos/química , Compostos Ferrosos/metabolismo , Modelos Moleculares , Compostos de Zinco/química , Compostos de Zinco/metabolismo
5.
Angew Chem Int Ed Engl ; 54(24): 7158-61, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-25914129

RESUMO

Three distinct families of ATP:corrinoid adenosyltransferases (ACATs) exist that are capable of converting vitamin B12 derivatives into coenzyme B12 by catalyzing the thermodynamically challenging reduction of Co(II) rrinoids to form "supernucleophilic" Co(I) intermediates. While the structures and mechanisms of two of the ACAT families have been studied extensively, little is known about the EutT enzymes beyond the fact that they exhibit a unique requirement for a divalent metal cofactor for enzymatic activity. In this study we have obtained compelling evidence that EutT converts cob(II)alamin into an effectively four-coordinate Co(II) species so as to facilitate Co(II)→Co(I) reduction. Intriguingly, EutT fails to promote axial ligand dissociation from the substrate analogue cob(II)inamide, a natural precursor of cob(II)alamin. This unique substrate specificity of EutT has important physiological implications.


Assuntos
Proteínas de Bactérias/metabolismo , Transferases/metabolismo , Proteínas de Bactérias/química , Biocatálise , Cobalto/química , Cobamidas/química , Cobamidas/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Salmonella enterica/enzimologia , Transferases/química , Vitamina B 12/química , Vitamina B 12/metabolismo
6.
J Bacteriol ; 196(4): 903-10, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24336938

RESUMO

ATP:co(I)rrinoid adenosyltransferase (ACAT) enzymes convert vitamin B12 to coenzyme B12. EutT is the least understood ACAT. We report the purification of EutT to homogeneity and show that, in vitro, free dihydroflavins drive the adenosylation of cob(II)alamin bound to EutT. Results of chromatography analyses indicate that EutT is dimeric in solution, and unlike other ACATs, EutT catalyzes the reaction with sigmoidal kinetics indicative of positive cooperativity for cob(II)alamin. Maximal EutT activity was obtained after metalation with ferrous ions. EutT/Fe(II) protein lost all activity upon exposure to air and H2O2, consistent with previously reported results indicating that EutT was an oxygen-labile metalloprotein containing a redox-active metal. Results of in vivo and in vitro analyses of single-amino-acid variants affecting a HX11CCXXC(83) motif conserved in EutT proteins showed that residues His67, Cys80, and Cys83 were required for EutT function in vivo, while Cys79 was not. Unlike that of other variants, the activity of the EutT(C80A) variant was undetectable in vitro, suggesting that Cys80 was critical to EutT function. Results of circular dichroism studies indicate that the presence or absence of a metal ion does not affect protein folding. EutT can now be purified in the presence of oxygen and reactivated with ferrous ions for maximal activity.


Assuntos
Trifosfato de Adenosina/metabolismo , Alquil e Aril Transferases/metabolismo , Coenzimas/metabolismo , Compostos Ferrosos/metabolismo , Íons/metabolismo , Metaloproteínas/metabolismo , Salmonella enterica/enzimologia , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/isolamento & purificação , Cromatografia Líquida , Análise Mutacional de DNA , Cinética , Metaloproteínas/genética , Metaloproteínas/isolamento & purificação , Multimerização Proteica , Salmonella enterica/genética
7.
Biochemistry ; 53(50): 7969-82, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25423616

RESUMO

CobA from Salmonella enterica (SeCobA) is a member of the family of ATP:Co(I)rrinoid adenosyltransferase (ACAT) enzymes that participate in the biosynthesis of adenosylcobalamin by catalyzing the transfer of the adenosyl group from an ATP molecule to a reactive Co(I)rrinoid species transiently generated in the enzyme active site. This reaction is thermodynamically challenging, as the reduction potential of the Co(II)rrinoid precursor in solution is far more negative than that of available reducing agents in the cell (e.g., flavodoxin), precluding nonenzymic reduction to the Co(I) oxidation state. However, in the active sites of ACATs, the Co(II)/Co(I) redox potential is increased by >250 mV via the formation of a unique four-coordinate (4c) Co(II)rrinoid species. In the case of the SeCobA ACAT, crystallographic and kinetic studies have revealed that the phenylalanine 91 (F91) and tryptophan 93 (W93) residues are critical for in vivo activity, presumably by blocking access to the lower axial ligand site of the Co(II)rrinoid substrate. To further assess the importance of the F91 and W93 residues with respect to enzymatic function, we have characterized various SeCobA active-site variants using electronic absorption, magnetic circular dichroism, and electron paramagnetic resonance spectroscopies. Our data provide unprecedented insight into the mechanism by which SeCobA converts the Co(II)rrinoid substrate to 4c species, with the hydrophobicity, size, and ability to participate in offset π-stacking interactions of key active-site residues all being critical for activity. The structural changes that occur upon Co(II)rrinoid binding also appear to be crucial for properly orienting the transiently generated Co(I) "supernucleophile" for rapid reaction with cosubstrate ATP.


Assuntos
Alquil e Aril Transferases/química , Proteínas de Bactérias/química , Cobalto/química , Salmonella typhimurium/enzimologia , Vitamina B 12/química , Alquil e Aril Transferases/genética , Proteínas de Bactérias/genética , Dicroísmo Circular , Espectroscopia de Ressonância de Spin Eletrônica , Interações Hidrofóbicas e Hidrofílicas , Salmonella typhimurium/genética
8.
Cell Host Microbe ; 32(3): 382-395.e10, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38309259

RESUMO

Methionine is an essential proteinogenic amino acid, but its excess can lead to deleterious effects. Inborn errors of methionine metabolism resulting from loss of function in cystathionine ß-synthase (CBS) cause classic homocystinuria (HCU), which is managed by a methionine-restricted diet. Synthetic biotics are gastrointestinal tract-targeted live biotherapeutics that can be engineered to replicate the benefits of dietary restriction. In this study, we assess whether SYNB1353, an E. coli Nissle 1917 derivative, impacts circulating methionine and homocysteine levels in animals and healthy volunteers. In both mice and nonhuman primates (NHPs), SYNB1353 blunts the appearance of plasma methionine and plasma homocysteine in response to an oral methionine load. A phase 1 clinical study conducted in healthy volunteers subjected to an oral methionine challenge demonstrates that SYNB1353 is well tolerated and blunts plasma methionine by 26%. Overall, SYNB1353 represents a promising approach for methionine reduction with potential utility for the treatment of HCU.


Assuntos
Homocistinúria , Metionina , Humanos , Camundongos , Animais , Metionina/metabolismo , Metionina/uso terapêutico , Voluntários Saudáveis , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Animais de Doenças , Homocistinúria/tratamento farmacológico , Homocistinúria/metabolismo , Racemetionina , Homocisteína/uso terapêutico
9.
Biochemistry ; 51(48): 9647-57, 2012 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-23148601

RESUMO

ATP:co(I)rrinoid adenosyltransferases (ACATs) are enzymes that catalyze the formation of adenosylcobalamin (AdoCbl, coenzyme B(12)) from cobalamin and ATP. There are three families of ACATs, namely, CobA, EutT, and PduO. In Salmonella enterica, CobA is the housekeeping enzyme that is required for de novo AdoCbl synthesis and for salvaging incomplete precursors and cobalamin from the environment. Here, we report the crystal structure of CobA in complex with ATP, four-coordinate cobalamin, and five-coordinate cobalamin. This provides the first crystallographic evidence of the existence of cob(II)alamin in the active site of CobA. The structure suggests a mechanism in which the enzyme adopts a closed conformation and two residues, Phe91 and Trp93, displace 5,6-dimethylbenzimidazole, the lower nucleotide ligand base of cobalamin, to generate a transient four-coordinate cobalamin, which is critical in the formation of the AdoCbl Co-C bond. In vivo and in vitro mutational analyses of Phe91 and Trp93 emphasize the important role of bulky hydrophobic side chains in the active site. The proposed manner in which CobA increases the redox potential of the cob(II)alamin/cob(I)alamin couple to facilitate formation of the Co-C bond appears to be analogous to that utilized by the PduO-type ACATs, where in both cases the polar coordination of the lower ligand to the cobalt ion is eliminated by placing that face of the corrin ring adjacent to a cluster of bulky hydrophobic side chains.


Assuntos
Fenilalanina/metabolismo , Salmonella enterica/enzimologia , Transferases/metabolismo , Triptofano/metabolismo , Vitamina B 12/biossíntese , Domínio Catalítico , Cinética , Modelos Moleculares , Conformação Proteica , Transferases/química , Vitamina B 12/metabolismo
10.
Nature ; 441(7093): 601-5, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16738653

RESUMO

The history of the Arctic Ocean during the Cenozoic era (0-65 million years ago) is largely unknown from direct evidence. Here we present a Cenozoic palaeoceanographic record constructed from >400 m of sediment core from a recent drilling expedition to the Lomonosov ridge in the Arctic Ocean. Our record shows a palaeoenvironmental transition from a warm 'greenhouse' world, during the late Palaeocene and early Eocene epochs, to a colder 'icehouse' world influenced by sea ice and icebergs from the middle Eocene epoch to the present. For the most recent approximately 14 Myr, we find sedimentation rates of 1-2 cm per thousand years, in stark contrast to the substantially lower rates proposed in earlier studies; this record of the Neogene reveals cooling of the Arctic that was synchronous with the expansion of Greenland ice (approximately 3.2 Myr ago) and East Antarctic ice (approximately 14 Myr ago). We find evidence for the first occurrence of ice-rafted debris in the middle Eocene epoch (approximately 45 Myr ago), some 35 Myr earlier than previously thought; fresh surface waters were present at approximately 49 Myr ago, before the onset of ice-rafted debris. Also, the temperatures of surface waters during the Palaeocene/Eocene thermal maximum (approximately 55 Myr ago) appear to have been substantially warmer than previously estimated. The revised timing of the earliest Arctic cooling events coincides with those from Antarctica, supporting arguments for bipolar symmetry in climate change.


Assuntos
Clima , Sedimentos Geológicos/análise , Água do Mar , Temperatura , Animais , Regiões Árticas , Gleiquênias , Fósseis , Sedimentos Geológicos/química , Efeito Estufa , História Antiga , Camada de Gelo , Oceanos e Mares , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA