Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 142(44): 18844-18858, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33084316

RESUMO

The drive toward sustainable phosphorus (P) recovery from agricultural and municipal wastewater streams has intensified. However, combining P recovery with energy conservation is perhaps one of the greatest challenges of this century. In this study, we report for the first time the simultaneous electroless production of struvite and dihydrogen from aqueous ammonium dihydrogen phosphate (NH4H2PO4) solutions in contact with either a pure magnesium (Mg) or a Mg alloy as the anode and 316 stainless steel (SS) as the cathode placed in a bench-scale electrochemical reactor. During the electroless process (i.e., in the absence of external electrical power), the open circuit potential (OCP), the formation of struvite on the anode, and the generation of dihydrogen at the cathode were monitored. We found that struvite is formed, and that struvite crystal structure/morphology and precipitate film thickness are affected by the concentration of the HnPO4n-3/NH4+ in solution and the composition of the anode. The pure Mg anode produced a porous 0.6-4.1 µm thick film, while the AZ31 Mg alloy produced a more compact 1.7-9.9 µm thick struvite film. Kinetic analyses revealed that Mg dissolution to Mg2+ followed mostly a zero-order kinetic rate law for both Mg anode materials, and the rate constants (k) depended upon the struvite layer morphology. Fourier-transform infrared spectrometry, X-ray diffraction, and scanning electron microscopy indicated that the synthesized struvite was of high quality. The dihydrogen and Mg2+ in solution were detected by a gas chromatography-thermal conductivity detector and ion chromatography, respectively. Furthermore, we fully demonstrate that the reactor was able to remove ∼73% of the HnPO4n-3 present in a natural poultry wastewater as mainly struvite. This study highlights the feasibility of simultaneously producing struvite and dihydrogen from wastewater effluents with no energy input in a green and sustainable approach.

2.
Molecules ; 25(8)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316421

RESUMO

The 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) oxidation of cellulose, when mediated with Oxone® (KHSO5), can be performed simply and under mild conditions. Furthermore, the products of the reaction can be isolated into two major components: Oxone®-mediated TEMPO-oxidized cellulose nanomaterials Form I and Form II (OTO-CNM Form I and Form II). This study focuses on the characterization of the properties of OTO-CNMs. Nanoparticle-sized cellulose fibers of 5 and 16 nm, respectively, were confirmed through electron microscopy. Infrared spectroscopy showed that the most carboxylation presented in Form II. Conductometric titration showed a two-fold increase in carboxylation from Form I (800 mmol/kg) to Form II (1600 mmol/kg). OTO-CNMs showed cellulose crystallinity in the range of 64-68% and crystallite sizes of 1.4-3.3 nm, as shown through XRD. OTO-CNMs show controlled variability in hydrophilicity with contact angles ranging from 16 to 32°, within or below the 26-47° reported in the literature for TEMPO-oxidized CNMs. Newly discovered OTO-CNM Form II shows enhanced hydrophilic properties as well as unique crystallinity and chemical functionalization in the field of bio-sourced material and nanocomposites.


Assuntos
Celulose Oxidada/química , Nanoestruturas/química , Piperidinas/química , Ácidos Sulfúricos/química , Densitometria , Interações Hidrofóbicas e Hidrofílicas , Nanoestruturas/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA