Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 262(Pt 2): 129953, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325678

RESUMO

Tau cleavage has been shown to have a significant effect on protein aggregation. Tau truncation results in the formation of aggregation-prone fragments leading to toxic aggregates and also causes the formation of harmful fragments that do not aggregate. Thus, targeting proteolysis of tau would be beneficial for the development of therapeutics for Alzheimer's disease and related tauopathies. In this study, amino-terminal quantification and ThT fluorimetry were respectively used to analyze the kinetics of tau fragmentation and fibril formation. SDS-PAGE analysis of tau protein incubated with a disulfide-reducing agent demonstrated that the cysteines of tau have a crucial role in the fibrillation and autoproteolysis. However, the structures converted to amyloid fibrils were different with conformations that led to autoproteolysis. The quantification of the amino terminal indicated that the double-disulfide parallel structures formed in the presence of heparin did not have protease activity. The survey of possible tau disulfide-mediated dimer configurations suggested that the non-register single disulfide bound conformations were involved in the tau autoproteolysis process. Moreover, the inhibition of autoproteolysis resulted in the increment of aggregation rate; hence it seems that the tau auto-cleavage is the cellular defense mechanism against protein fibrillation.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Proteínas tau/química , Amiloide/química , Doença de Alzheimer/metabolismo , Tauopatias/metabolismo , Dissulfetos
2.
Protein J ; 43(3): 522-543, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38662183

RESUMO

Bacteriophage endolysins are potential alternatives to conventional antibiotics for treating multidrug-resistant gram-negative bacterial infections. However, their structure-function relationships are poorly understood, hindering their optimization and application. In this study, we focused on the individual functionality of the C-terminal muramidase domain of Gp127, a modular endolysin from E. coli O157:H7 bacteriophage PhaxI. This domain is responsible for the enzymatic activity, whereas the N-terminal domain binds to the bacterial cell wall. Through protein modeling, docking experiments, and molecular dynamics simulations, we investigated the activity, stability, and interactions of the isolated C-terminal domain with its ligand. We also assessed its expression, solubility, toxicity, and lytic activity using the experimental data. Our results revealed that the C-terminal domain exhibits high activity and toxicity when tested individually, and its expression is regulated in different hosts to prevent self-destruction. Furthermore, we validated the muralytic activity of the purified refolded protein by zymography and standardized assays. These findings challenge the need for the N-terminal binding domain to arrange the active site and adjust the gap between crucial residues for peptidoglycan cleavage. Our study shed light on the three-dimensional structure and functionality of muramidase endolysins, thereby enriching the existing knowledge pool and laying a foundation for accurate in silico modeling and the informed design of next-generation enzybiotic treatments.


Assuntos
Endopeptidases , Escherichia coli O157 , Proteínas Virais , Endopeptidases/química , Endopeptidases/genética , Endopeptidases/metabolismo , Endopeptidases/farmacologia , Relação Estrutura-Atividade , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Escherichia coli O157/genética , Muramidase/química , Muramidase/genética , Muramidase/metabolismo , Simulação de Dinâmica Molecular , Domínios Proteicos , Simulação de Acoplamento Molecular , Colífagos/genética , Colífagos/química , Colífagos/enzimologia
3.
Sci Rep ; 14(1): 7353, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548822

RESUMO

The substitution of leucine to proline at position 39 (p.P39L) in human αB-crystallin (αB-Cry) has been associated with conflicting interpretations of pathogenicity in cataracts and cardiomyopathy. This study aimed to investigate the effects of the p.P39L mutation on the structural and functional features of human αB-Cry. The mutant protein was expressed in Escherichia coli (E. coli) and purified using anion exchange chromatography. We employed a wide range of spectroscopic analyses, gel electrophoresis, transmission electron microscopy (TEM), and atomic force microscopy (AFM) techniques to investigate the structure, function, stability, and fibrillation propensity of the mutant protein. The p.P39L mutation caused significant changes in the secondary, tertiary, and quaternary structures of human αB-Cry and increased the thermal stability of the protein. The mutant αB-Cry exhibited an increased chaperone activity and an altered oligomeric size distribution, along with an increased propensity to form amyloid aggregates. It is worth mentioning, increased chaperone activity has important positive and negative effects on damaged cells related to cataracts and cardiomyopathy, particularly by interfering in the process of apoptosis. Despite the apparent positive nature of the increased chaperone activity, it is also linked to adverse consequences. This study provides important insights into the effect of proline substitution by leucine at the N-terminal region on the dual nature of chaperone activity in human αB-Cry, which can act as a double-edged sword.


Assuntos
Cardiomiopatias , Catarata , Cristalinas , Humanos , Catarata/genética , Cristalinas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Leucina , Chaperonas Moleculares/metabolismo , Proteínas Mutantes/metabolismo , Prolina/genética , Estrutura Secundária de Proteína
4.
Int J Biol Macromol ; 263(Pt 1): 130261, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368978

RESUMO

αB-Crystallin (αB-Cry) is a small heat shock protein known for its protective role, with an adaptable structure that responds to environmental changes through oligomeric dynamics. Cu(II) ions are crucial for cellular processes but excessive amounts are linked to diseases like cataracts and neurodegeneration. This study investigated how optimal and detrimental Cu(II) concentrations affect αB-Cry oligomers and their chaperone activity, within the potassium-regulated ionic-strength environment. Techniques including isothermal titration calorimetry, differential scanning calorimetry, fluorescence spectroscopy, inductively coupled plasma atomic emission spectroscopy, cyclic voltammetry, dynamic light scattering, circular dichroism, and MTT assay were employed and complemented by computational methods. Results showed that potassium ions affected αB-Cry's structure, promoting Cu(II) binding at multiple sites and scavenging ability, and inhibiting ion redox reactions. Low concentrations of Cu(II), through modifications of oligomeric interfaces, induce regulation of surface charge and hydrophobicity, resulting in an increase in chaperone activity. Subunit dynamics were regulated, maintaining stable interfaces, thereby inhibiting further aggregation and allowing the functional reversion to oligomers after stress. High Cu(II) disrupted charge/hydrophobicity balance, sewing sizable oligomers together through subunit-subunit interactions, suppressing oligomer dissociation, and reducing chaperone efficiency. This study offers insights into how Cu(II) and potassium ions influence αB-Cry, advancing our understanding of Cu(II)-related diseases.


Assuntos
Cobre , Cadeia B de alfa-Cristalina , Humanos , Cobre/química , Cadeia B de alfa-Cristalina/química , Chaperonas Moleculares , Homeostase , Íons
5.
Sci Rep ; 14(1): 6912, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519489

RESUMO

In pulmonary inflammation diseases, like COVID-19, lung involvement and inflammation determine the treatment regime. Respiratory inflammation is typically arisen due to the cytokine storm and the leakage of the vessels for immune cells recruitment. Currently, such a situation is detected by the clinical judgment of a specialist or precisely by a chest CT scan. However, the lack of accessibility to the CT machines in many poor medical centers as well as its expensive service, demands more accessible methods for fast and cheap detection of lung inflammation. Here, we have introduced a novel method for tracing the inflammation and lung involvement in patients with pulmonary inflammation, such as COVID-19, by a simple electrolyte detection in their sputum samples. The presence of the electrolyte in the sputum sample results in the fern-like structures after air-drying. These fern patterns are different in the CT positive and negative cases that are detected by an AI application on a smartphone and using a low-cost and portable mini-microscope. Evaluating 160 patient-derived sputum sample images, this method demonstrated an interesting accuracy of 95%, as confirmed by CT-scan results. This finding suggests that the method has the potential to serve as a promising and reliable approach for recognizing lung inflammatory diseases, such as COVID-19.


Assuntos
COVID-19 , Smartphone , Humanos , Redes Neurais de Computação , COVID-19/diagnóstico , Inflamação , Testes Imediatos , Eletrólitos , Teste para COVID-19
6.
Biochimie ; 222: 151-168, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38494110

RESUMO

To date, several pathogenic mutations have been identified in the primary structure of human α-Crystallin, frequently involving the substitution of arginine with a different amino acid. These mutations can lead to the incidence of cataracts and myopathy. Recently, an important cataract-associated mutation has been reported in the functional α-Crystallin domain (ACD) of human αB-Crystallin protein, where arginine 107 (R107) is replaced by a leucine. In this study, we investigated the structure, chaperone function, stability, oligomerization, and amyloidogenic properties of the p.R107L human αB-Crystallin using a number of different techniques. Our results suggest that the p.R107L mutation can cause significant changes in the secondary, tertiary, and quaternary structures of αB-Crystallin. This cataractogenic mutation led to the formation of protein oligomers with larger sizes than the wild-type protein and reduced the chemical and thermal stability of the mutant chaperone. Both fluorescence and microscopic assessments indicated that this mutation significantly altered the amyloidogenic properties of human αB-Crystallin. Furthermore, the mutant protein indicated an attenuated in vitro chaperone activity. The molecular dynamics (MD) simulation confirmed the experimental results and indicated that p.R107L mutation could alter the proper conformation of human αB-Crystallin dimers. In summary, our results indicated that the p.R107L mutation could promote the formation of larger oligomers, diminish the stability and chaperone activity of human αB-Crystallin, and these changes, in turn, can play a crucial role in the development of cataract disorder.


Assuntos
Catarata , Cadeia B de alfa-Cristalina , Humanos , Cadeia B de alfa-Cristalina/genética , Cadeia B de alfa-Cristalina/química , Cadeia B de alfa-Cristalina/metabolismo , Substituição de Aminoácidos , Catarata/genética , Catarata/metabolismo , Simulação de Dinâmica Molecular , Mutação , Mutação de Sentido Incorreto , Domínios Proteicos , Multimerização Proteica , Estabilidade Proteica
7.
ACS Appl Mater Interfaces ; 16(24): 30997-31010, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38838270

RESUMO

The importance of amyloid nanofibrils made from food proteins is rising in diverse fields, such as biomedicine and food science. These protein nanofibrils (PNFs) serve as versatile and sustainable building blocks for biomaterials, characterized by their high ß-sheet content and an ordered hydrogen bond network. These properties offer both stability and flexibility, along with an extreme aspect ratio and reactive functional groups. Plant-derived amyloid nanofibrils, such as soy protein isolate (SPI) PNFs, are increasingly favored due to their affordability and sustainability compared with animal proteins. This study aimed to explore the formation and application of SPI amyloid-like aggregates (SPIA) and their nanoencapsulation of curcumin (Cur) for biomedical purposes, particularly in wound healing. Under specific conditions of low pH and high temperature, SPIA formed, exhibited an amyloid nature, and successfully encapsulated Cur, thereby enhancing its stability and availability. Spectroscopic and microscopic analyses confirmed structural changes in SPIA upon the incorporation of Cur and the fabrication of SPIA@Cur. The obtained results indicate that in the presence of Cur, SPIA forms faster, attributed to accelerated SPI denaturation, an increased nucleation rate, and enhanced self-assembly facilitated by Cur's hydrophobic interactions and π-π stacking with SPI peptides. In vitro studies demonstrated the biocompatibility, biodegradability, and antioxidant properties of SPIA@Cur along with controlled release behavior. In vivo experiments in male Wistar rats revealed that both SPIA and SPIA@Cur significantly accelerate wound closure compared with untreated wounds, with SPIA@Cur showing slightly better efficacy. The histological analysis supported enhanced wound healing, indicating the potential of SPIA@Cur for biomedical applications.


Assuntos
Amiloide , Curcumina , Proteínas de Soja , Cicatrização , Curcumina/química , Curcumina/farmacologia , Cicatrização/efeitos dos fármacos , Proteínas de Soja/química , Proteínas de Soja/farmacologia , Animais , Amiloide/química , Amiloide/metabolismo , Ratos , Humanos , Antioxidantes/química , Antioxidantes/farmacologia , Nanofibras/química
8.
ACS Appl Mater Interfaces ; 16(23): 29581-29599, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38814442

RESUMO

Designing and synthesizing one-dimensional porous Pt nanocrystals with unique optical, electrocatalytic, and theranostic properties are gaining lots of attention, especially to overcome the challenges of tumor recurrence and resistance to platinum-based chemotherapy. Herein, we represented an interesting report of a one-step and facile strategy for synthesizing multifunctional one-dimensional (1D) porous Pt nanoribbons (PtNRBs) with highly efficient therapeutic effects on cancer cells based on inherent electrocatalytic activity. The critical point in the formation of luminescent porous PtNRBs was the use of human hemoglobin (Hb) as a shape-regulating, stabilizing, and reducing agent with facet-specific domains on which fluorescent platinum nanoclusters at first are aggregated by aggregation-induced emission phenomena (AIE) and then crystallized into contact and penetration twins, as intermediate products, followed by shaping of the final luminescent porous ribbon nanomaterials, owing to oriented attachment association via the Ostwald ripening mechanism. From a medical point of view, the key strategy for effective cancer therapy occured via using low-dosage ethanol in the presence of electroactive porous PtNRBs based on intracellular ethanol oxidation-mediated reactive oxygen species (ROS) generation. The role of heme groups of Hb, as electrocatalytically active centers, was successfully demonstrated in both kinetically controlled anisotropic growth of NRBs for slowing down the reduction of Pt(II) followed by oligomerization of Pt(II)-Hb complexes via platinophilic interactions as well as electrocatalytic ethanol oxidation for therapy. Interestingly, hyaluronic acid-targeted (HA) Hb-PtNRB in the presence of low-dose ethanol caused extraordinary arrest of tumor growth and metastasis with no recurrence even after the treatment course stopped, which caused elongation of tumor-bearing mice survival. HA/Hb-PtNRB was completely biocompatible and exhibited high tumor-targeting efficacy for fluorescent imaging of breast tumors. Therefore, the synergistic electrocatalytic activity of PtNRBs is presented as an efficient and safe cancer theranostic method for the first time.


Assuntos
Platina , Platina/química , Platina/farmacologia , Humanos , Animais , Camundongos , Porosidade , Catálise , Espécies Reativas de Oxigênio/metabolismo , Feminino , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Nanotubos de Carbono/química , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Proliferação de Células/efeitos dos fármacos , Hemoglobinas/química
9.
Int J Biol Macromol ; 276(Pt 2): 133941, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39032907

RESUMO

Catalase (CAT), a ubiquitous enzyme in all oxygen-exposed organisms, effectively decomposes hydrogen peroxide (H2O2), a harmful by-product, into water and oxygen, mitigating oxidative stress and cellular damage, safeguarding cellular organelles and tissues. Therefore, CAT plays a crucial role in maintaining cellular homeostasis and function. Owing to its pivotal role, CAT has garnered considerable interest. However, many challenges arise when used, especially in multiple practical processes. "Immobilization", a widely-used technique, can help improve enzyme properties. CAT immobilization offers numerous advantages, including enhanced stability, reusability, and facilitated downstream processing. This review presents a comprehensive overview of CAT immobilization. It starts with discussing various immobilization mechanisms, support materials, advantages, drawbacks, and factors influencing the performance of immobilized CAT. Moreover, the review explores the application of the immobilized CAT in various industries and its prospects, highlighting its essential role in diverse fields and stimulating further research and investigation. Furthermore, the review highlights some of the world's leading companies in the field of the CAT industry and their substantial potential for economic contribution. This review aims to serve as a discerning, source of information for researchers seeking a comprehensive cutting-edge overview of this rapidly evolving field and have been overwhelmed by the size of publications.


Assuntos
Catalase , Enzimas Imobilizadas , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Catalase/metabolismo , Catalase/química , Animais , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/química , Estabilidade Enzimática , Humanos
10.
Biochim Biophys Acta Gen Subj ; 1868(4): 130579, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38307443

RESUMO

αB-crystallin, a member of the small heat shock protein (sHSP) family, is expressed in diverse tissues, including the eyes, brain, muscles, and heart. This protein plays a crucial role in maintaining eye lens transparency and exhibits holdase chaperone and anti-apoptotic activities. Therefore, structural and functional changes caused by genetic mutations in this protein may contribute to the development of disorders like cataract and cardiomyopathy. Recently, the substitution of arginine 123 with tryptophan (p.R123W mutation) in human αB-crystallin has been reported to trigger cardiomyopathy. In this study, human αB-crystallin was expressed in Escherichia coli (E. coli), and the missense mutation p.R123W was created using site-directed mutagenesis. Following purification via anion exchange chromatography, the structural and functional properties of both proteins were investigated and compared using a wide range of spectroscopic and microscopic methods. The p.R123W mutation induced significant alterations in the secondary, tertiary, and quaternary structures of human αB-crystallin. This pathogenic mutation resulted in an increased ß-sheet structure and formation of protein oligomers with larger sizes compared to the wild-type protein. The mutant protein also exhibited reduced chaperone activity and lower thermal stability. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) demonstrated that the p.R123W mutant protein is more prone to forming amyloid aggregates. The structural and functional changes observed in the p.R123W mutant protein, along with its increased propensity for aggregation, could impact its proper functional interaction with the target proteins in the cardiac muscle, such as calcineurin. Our results provide an explanation for the pathogenic intervention of p.R123W mutant protein in the occurrence of hypertrophic cardiomyopathy (HCM).


Assuntos
Cardiomiopatias , Escherichia coli , Humanos , Cadeia B de alfa-Cristalina/genética , Cadeia B de alfa-Cristalina/metabolismo , Cardiomiopatias/genética , Escherichia coli/metabolismo , Proteínas Mutantes/química , Mutação
11.
Int J Biol Macromol ; 263(Pt 1): 130223, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38365146

RESUMO

In the present study, we investigated the effects of N-homocysteine thiolactone (tHcy) modification on expressed and purified tau protein and the synthesized VQIVYK target peptide. The modified constructs were subjected to comprehensive validation using various methodologies, including mass spectrometry. Subsequently, in vivo, in vitro, and in silico characterizations were performed under both reducing and non-reducing conditions, as well as in the presence and absence of heparin as a cofactor. Our results unequivocally confirmed that under reducing conditions and in the presence of heparin, the modified constructs exhibited a greater propensity for aggregation. This enhanced aggregative behavior can be attributed to the disruption of lysine positive charges and the subsequent influence of hydrophobic and p-stacking intermolecular forces. Notably, the modified oligomeric species induced apoptosis in the SH-SY5Y cell line, and this effect was further exacerbated with longer incubation times and higher concentrations of the modifier. These observations suggest a potential mechanism involving reactive oxygen species (ROS). To gain a deeper understanding of the molecular mechanisms underlying the neurotoxic effects, further investigations are warranted. Elucidating these mechanisms will contribute to the development of more effective strategies to counteract aggregation and mitigate neurodegeneration.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Proteínas tau/química , Lisina/metabolismo , Neuroblastoma/metabolismo , Encéfalo/metabolismo , Heparina/metabolismo , Doença de Alzheimer/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA