Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Neurosci ; 53(8): 2901-2911, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33561905

RESUMO

Falls are associated with impairment in postural control in people with Parkinson's disease (PwPD). We aimed to predict the fall risk through models combining postural responses with clinical and cognitive measures. Also, we compared the center of pressure (CoP) between PwPD fallers and non-fallers after unpredictable external perturbations. We expected that CoP parameters combined with clinical and cognitive measures would predict fall risk. Seventy-five individuals participated in the study. CoP parameters were measured during postural responses through five trials with unpredictable translations of the support-surface in posterior direction. Range and peak of CoP were analyzed in two periods: early and late responses. Time to peak (negative peak) and recovery time were analyzed regardless of the periods. Models included the CoP parameters in early (model 1), late responses (model 2), and temporal parameters (model 3). Clinical and cognitive measures were entered into all models. Twenty-nine participants fell at least once, and 46 PwPD did not fall during 12 months following the postural assessment. Range of CoP in late responses was associated with fall risk (p = .046). However, although statistically non-significant, this parameter indicated low accuracy in predicting fall risk (area under the curve = 0.58). Fallers presented a higher range of CoP in early responses than non-fallers (p = .033). In conclusion, although an association was observed between fall risk and range of CoP in late responses, this parameter indicated low accuracy in predicting fall risk in PwPD. Also, fallers demonstrate worse postural control during early responses after external perturbations than non-fallers, measured by CoP parameters.


Assuntos
Doença de Parkinson , Acidentes por Quedas , Suscetibilidade a Doenças , Humanos , Equilíbrio Postural
2.
Gait Posture ; 114: 1-7, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39197335

RESUMO

BACKGROUND: Impairments in postural responses to perturbation are common in people with Parkinson's disease (PwPD) and lack effective treatment. We recently showed that a single session of transcranial direct current stimulation (tDCS) promotes acute improvement of postural response to perturbation in PwPD. However, the effects of multiple tDCS sessions remain unclear. RESEARCH QUESTION: What is the efficacy of eight sessions of anodal tDCS on postural responses to external perturbation in PwPD? METHODS: Twenty-two PwPD participated in this randomized, double-blind, parallel-arm, and sham-controlled study. Participants were randomly distributed into active (a-tDCS; n=11) or sham stimulation (s-tDCS; n=11). Eight tDCS sessions were applied over the primary motor cortex (M1), with the a-tDCS group receiving 2 mA for 20 minutes. Postural responses to external perturbations were assessed before, 48 hours after, and one month after (follow-up) the completion of tDCS sessions. Primary outcome measures included the onset latency of medial gastrocnemius (MG) muscle and range of center of pressure. Secondary outcomes included electromyography and CoP parameters, and prefrontal cortex (PFC) activity. RESULTS: ANOVA revealed a trend for Group*Moment interaction for MG onset latency (p=0.058). a-tDCS tended to have shorter MG onset latency at post-test (p=0.040; SRM = -0.63) compared to pre-test. For the secondary outcomes, only a-tDCS decreased the time taken to recover balance after the perturbation at post-test and follow-up compared to pre-test (both p<0.001; SRM=-1.42 and -1.53, respectively). Also, only a-tDCS demonstrated lower PFC activity at post-test compared to pre-test (p=0.017; SRM = -0.82) and follow-up (p=0.001). SIGNIFICANCE: Eight sessions of tDCS over M1 improved postural response to perturbation in PwPD. Some benefits lasted for at least a month. Neuromuscular and behavioral changes observed after the intervention were accompanied by decreased PFC activity (executive-attentional control), suggesting that tDCS applied over M1 can improve movement automaticity.

3.
PLoS One ; 19(4): e0300243, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38662740

RESUMO

Gait impairments negatively affect the quality of life of people with Parkinson's disease (PwPD). Aerobic exercise (AE) is an alternative to alleviate these impairments and its combination with transcranial direct current stimulation (tDCS) has demonstrated synergistic effects. However, the effect of multitarget tDCS application (i.e., motor, and prefrontal cortices simultaneously) combined with physical exercise on gait impairments is still little known. Thus, the proposed randomized clinical trial will verify the acute effects of AE combined with tDCS applied on motor and prefrontal cortices separately and simultaneously on gait (spatial-temporal and cortical activity parameters) in PwPD. Twenty-four PwPD in Hoehn & Yahr stages I-III will be recruited for this crossover study. PwPD will practice AE on treadmill simultaneously with the application of anodal tDCS during four intervention sessions on different days (∼ one week of interval). Active tDCS will be applied to the primary motor cortex, prefrontal cortex, and both areas simultaneously (multitarget), with an intensity of 2 mA for 20 min. For sham, the stimulation will remain at 2 mA for 10 s. The AE will last a total of 30 min, consisting of warm-up, main part (20 min with application of tDCS), and recovery. Exercise intensity will be controlled by heart rate. Spatial-temporal and cortical activity parameters will be acquired before and after each session during overground walking, walking with obstacle avoidance, and walking with a cognitive dual task at self-preferred velocity. An accelerometer will be positioned on the fifth lumbar vertebra to obtain the spatial-temporal parameters (i.e., step length, duration, velocity, and swing phase duration). Prefrontal cortex activity will be recorded from a portable functional near-infrared spectroscopy system and oxygenated and deoxygenated hemoglobin concentrations will be analyzed. Two-way ANOVAs with repeated measures for stimulation and moment will be performed. The findings of the study may contribute to improving gait in PwPD. Trial registration: Brazilian Clinical Trials Registry (RBR-738zkp7).


Assuntos
Exercício Físico , Marcha , Doença de Parkinson , Estimulação Transcraniana por Corrente Contínua , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Cross-Over , Exercício Físico/fisiologia , Teste de Esforço , Terapia por Exercício/métodos , Marcha/fisiologia , Córtex Motor/fisiopatologia , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Córtex Pré-Frontal/fisiologia , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Estimulação Transcraniana por Corrente Contínua/métodos
4.
Behav Brain Res ; 452: 114581, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37453515

RESUMO

BACKGROUND: Balance impairments in people with Parkinson's disease (PD) demonstrated mainly in challenging postural tasks, such as increased body oscillation may be attributed to the deficits in the brain structures functionality involved in postural control (e.g., motor cortex, midbrain, and brainstem). Although promising results, the effect of transcranial direct current stimulation (tDCS) on postural control in people with PD is unclear, especially in objective measures such as the center of pressure (CoP) parameters. Thus, we analyzed the effects of a single session of tDCS on the CoP parameters during the adapted tandem position in people with PD. METHODS: Nineteen people with PD participated in this crossover, randomized, and double-blind study. Anodal tDCS was applied over the primary motor cortex in two conditions of stimulation (2 mA/active and sham) on two different days for 20 min immediately before the postural control evaluation. Participants remained standing in an adapted tandem position for the postural control assessment for 30 s (three trials). CoP parameters were acquired by a force plate. RESULTS: No significant differences were demonstrated between stimulation conditions (p-value range = 0.15-0.89). CONCLUSIONS: Our results suggested that a single session of tDCS with 2 mA does not improve the postural control of people with PD during adapted tandem.


Assuntos
Doença de Parkinson , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Projetos Piloto , Doença de Parkinson/terapia , Equilíbrio Postural/fisiologia , Método Duplo-Cego
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA