RESUMO
Monitoring antimalarial efficacy is important to detect the emergence of parasite drug resistance. Angola conducts in vivo therapeutic efficacy studies (TESs) every 2 years in its fixed sentinel sites in Benguela, Lunda Sul, and Zaire provinces. Children with uncomplicated Plasmodium falciparum malaria were treated with artemether-lumefantrine (AL), artesunate-amodiaquine (ASAQ), dihydroartemisinin-piperaquine (DP), or artesunate-pyronaridine (ASPY) and followed for 28 (AL and ASAQ) or 42 days (DP and ASPY) to assess clinical and parasitological response to treatment. Two drugs were sequentially assessed in each site in February-July 2021. The primary indicator was the Kaplan-Meier estimate of the PCR-corrected efficacy at the end of the follow-up period. A total of 622 patients were enrolled in the study and 590 (95%) participants reached a study endpoint. By day 3, ≥98% of participants were slide-negative in all study sites and arms. After PCR correction, day 28 AL efficacy was 88.0% (95% CI: 82%-95%) in Zaire and 94.7% (95% CI: 90%-99%) in Lunda Sul. For ASAQ, day 28 efficacy was 92.0% (95% CI: 87%-98%) in Zaire and 100% in Lunda Sul. Corrected day 42 efficacy was 99.6% (95% CI: 99%-100%) for ASPY and 98.3% (95% CI: 96%-100%) for DP in Benguela. High day 3 clearance rates suggest no clinical evidence of artemisinin resistance. This was the fourth of five rounds of TES in Angola showing a corrected AL efficacy <90% in a site. For Zaire, AL has had an efficacy <90% in 2013, 2015, and 2021. ASAQ, DP, and ASPY are appropriate choices as artemisinin-based combination therapies in Angola.
Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Criança , Humanos , Antimaláricos/uso terapêutico , Artesunato/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Angola , Artemeter/uso terapêutico , Artemisininas/uso terapêutico , Amodiaquina/uso terapêutico , Malária Falciparum/tratamento farmacológico , Combinação de Medicamentos , Plasmodium falciparumRESUMO
Sulfadoxine-pyrimethamine (SP) is used for prevention of malaria in pregnant women in Angola. We sequenced the Plasmodium falciparum dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps) genes, implicated in SP resistance, in samples collected during a 2019 study of artemisinin-based combination therapy efficacy in Benguela, Lunda Sul, and Zaire provinces. A total of 90 day 0 and day of failure samples were individually sequenced, while 508 day 0 samples from participants without recurrent parasitemia were pooled after DNA extraction into 61 pools. The N51I, C59R, and S108N pfdhfr mutations and A437G pfdhps mutations were present at high proportions in all provinces (weighted allele frequencies, 62% to 100%). The K540E pfdhps mutation was present at lower proportions (10% to 14%). The A581G pfdhps mutation was only observed in Zaire, at a 4.6% estimated prevalence. The I431V and A613S mutations were also only observed in Zaire, at a prevalence of 2.8% to 2.9%. The most common (27% to 66%) reconstructed haplotype in all three provinces was the canonical quadruple pfdhfr pfdhps mutant. The canonical quintuple mutant was absent in Lunda Sul and Benguela and present in 7.9% of samples in Zaire. A single canonical sextuple (2.6%) mutant was observed in Zaire Province. Proportions of the pfdhps K540E and A581G mutations were well below the World Health Organization thresholds for meaningful SP resistance (prevalence of 95% for K540E and 10% for A581G). Samples from therapeutic efficacy studies represent a convenient source of samples for monitoring SP resistance markers.
Assuntos
Antimaláricos , Malária Falciparum , Criança , Feminino , Humanos , Gravidez , Plasmodium falciparum/genética , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Angola , Pirimetamina/farmacologia , Pirimetamina/uso terapêutico , Sulfadoxina/farmacologia , Sulfadoxina/uso terapêutico , Combinação de Medicamentos , Tetra-Hidrofolato Desidrogenase/genética , Resistência a Medicamentos/genéticaRESUMO
Biennial therapeutic efficacy monitoring is a crucial activity for ensuring the efficacy of currently used artemisinin-based combination therapy in Angola. Children with acute uncomplicated Plasmodium falciparum infection in sentinel sites in the Benguela, Zaire, and Lunda Sul Provinces were treated with artemether-lumefantrine (AL) or artesunate-amodiaquine (ASAQ) and monitored for 28 days to assess clinical and parasitological responses. Molecular correction was performed using seven microsatellite markers. Samples from treatment failures were genotyped for the pfk13, pfcrt, and pfmdr1 genes. Day 3 clearance rates were ≥95% in all arms. Uncorrected day 28 Kaplan-Meier efficacy estimates ranged from 84.2 to 90.1% for the AL arms and 84.7 to 100% for the ASAQ arms. Corrected day 28 estimates were 87.6% (95% confidence interval [CI], 81 to 95%) for the AL arm in Lunda Sul, 92.2% (95% CI, 87 to 98%) for AL in Zaire, 95.6% (95% CI, 91 to 100%) for ASAQ in Zaire, 98.4% (95% CI, 96 to 100%) for AL in Benguela, and 100% for ASAQ in Benguela and Lunda Sul. All 103 analyzed samples had wild-type pfk13 sequences. The 76T pfcrt allele was found in most (92%; 11/12) ASAQ late-failure samples but in only 16% (4/25) of AL failure samples. The N86 pfmdr1 allele was found in 97% (34/35) of treatment failures. The AL efficacy in Lunda Sul was below the 90% World Health Organization threshold, the third time in four rounds that this threshold was crossed for an AL arm in Angola. In contrast, the observed ASAQ efficacy has not been below 95% to date in Angola, including this latest round.
Assuntos
Antimaláricos , Malária Falciparum , Amodiaquina/uso terapêutico , Angola , Antimaláricos/uso terapêutico , Artemeter/uso terapêutico , Combinação Arteméter e Lumefantrina , Criança , República Democrática do Congo , Combinação de Medicamentos , Etanolaminas/uso terapêutico , Humanos , Lactente , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/genéticaRESUMO
The geographic and evolutionary origins of the SARS-CoV-2 Omicron variant (BA.1), which was first detected mid-November 2021 in Southern Africa, remain unknown. We tested 13,097 COVID-19 patients sampled between mid-2021 to early 2022 from 22 African countries for BA.1 by real-time RT-PCR. By November-December 2021, BA.1 had replaced the Delta variant in all African sub-regions following a South-North gradient, with a peak Rt of 4.1. Polymerase chain reaction and near-full genome sequencing data revealed genetically diverse Omicron ancestors already existed across Africa by August 2021. Mutations, altering viral tropism, replication and immune escape, gradually accumulated in the spike gene. Omicron ancestors were therefore present in several African countries months before Omicron dominated transmission. These data also indicate that travel bans are ineffective in the face of undetected and widespread infection.