Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Br J Pharmacol ; 168(2): 389-402, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22889120

RESUMO

BACKGROUND AND PURPOSE: Kinins are pro-inflammatory peptides that are released during tissue injury, including that caused by inflammatory bowel disease. Herein, we assessed the role and underlying mechanisms through which the absence of kinin B(1) receptors exacerbates the development of dextran sulfate sodium (DSS)-induced colitis in mice. EXPERIMENTAL APPROACH: B(1) and B(2) receptor antagonists and B(1) receptor knockout mice (B1(-/-) ) were used to assess the involvement of B(1) and B(2) receptor signalling in a DSS-colitis. B(1) receptor, B(2) receptor, occludin and claudin-4 expression, cytokine levels and cell permeability were evaluated in colon from wild-type (WT) and B1(-/-) mice. KEY RESULTS: DSS-induced colitis was significantly exacerbated in B1(-/-) compared with WT mice. IL-1ß, IFN-γ, keratinocyte-derived chemokine and macrophage inflammatory protein-2 were markedly increased in the colon from DSS-treated B1(-/-) compared with DSS-treated WT mice. Treatment of WT mice with a selective B(1) receptor antagonist, DALBK or SSR240612, had no effect on DSS-induced colitis. Of note, B(2) receptor mRNA expression was significantly up-regulated in colonic tissue from the B1(-/-) mice after DSS administration. Moreover, treatment with a selective B(2) receptor antagonist prevented the exacerbation of colitis in B1(-/-) mice following DSS administration. The water- or DSS-treated B1(-/-) mice showed a decrease in occludin gene expression, which was partially prevented by the B(2) receptor antagonist. CONCLUSIONS AND IMPLICATIONS: A loss of B(1) receptors markedly exacerbates the severity of DSS-induced colitis in mice. The increased susceptibility of B1(-/-) may be associated with compensatory overexpression of B(2) receptors, which, in turn, modulates tight junction expression.


Assuntos
Colite/metabolismo , Receptor B1 da Bradicinina/metabolismo , Receptor B2 da Bradicinina/metabolismo , Animais , Bradicinina/análogos & derivados , Bradicinina/farmacologia , Antagonistas de Receptor B1 da Bradicinina , Antagonistas de Receptor B2 da Bradicinina , Colite/induzido quimicamente , Colite/patologia , Citocinas/metabolismo , Sulfato de Dextrana , Dioxóis/farmacologia , Homeostase , Mucosa Intestinal/metabolismo , Intestinos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peroxidase/metabolismo , Receptor B1 da Bradicinina/genética , Sulfonamidas/farmacologia , Junções Íntimas/metabolismo , Regulação para Cima
2.
Epilepsy Res ; 101(3): 253-60, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22591751

RESUMO

Homer1a regulates expression of group I metabotropic glutamate receptors type I (mGluR1 and mGluR5) and is involved in neuronal plasticity. It has been reported that Homer1a expression is upregulated in the kindling model and hypothesized to act as an anticonvulsant. In the present work, we investigated whether pilocarpine-induced status epilepticus (SE) would alter Homer1a and mGluR5 expression in hippocampus. Adult rats were subjected to pilocarpine-model and analyzed at 2h, 8h, 24h and 7 d following SE. mRNA analysis showed the highest expression of Homer1a at 8h after SE onset, while immunohistochemistry demonstrated that Homer1a protein expression was significantly increased in hippocampus, amygdala and piriform and entorhinal cortices at 24h after SE onset when compared to control animals. The increased Homer1a expression coincided with a significant decrease of mGluR5 protein expression in amygdala and piriform and entorhinal cortices. The data suggest that during the critical periods of epileptogenesis, overexpression of Homer1a occurs to counteract hyperexcitability and thus Homer1a may be a molecular target in the treatment of epilepsy.


Assuntos
Proteínas de Transporte/metabolismo , Pilocarpina/toxicidade , Receptores de Glutamato Metabotrópico/metabolismo , Estado Epiléptico/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Arcabouço Homer , Masculino , Ratos , Ratos Wistar , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/genética , Convulsões/induzido quimicamente , Convulsões/metabolismo , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA