RESUMO
Global change is believed to be a major driver of the emergence of invasive pathogens. Yet, there are few documented examples that illustrate the processes that hinder or trigger their geographic spread. Here, we present phylogenetic, epidemiological and historical evidence to explain how European vineyards escaped Xylella fastidiosa (Xf), the vector-borne bacterium responsible for Pierce's disease (PD). Using Bayesian temporal reconstruction, we show that the export of American grapevines to France as rootstocks to combat phylloxera (~1872-1895) preceded the spread of the Xf grapevine lineage in the USA. We found that the time of the most recent common ancestor in California dates to around 1875, which agrees with the emergence of the first PD outbreak and the expansion into the southeastern US around 1895. We also show that between 1870 and 1990, climatic conditions in continental Europe were mostly below the threshold for the development of PD epidemics. However, our model indicates an inadvertent expansion of risk in southern Europe since the 1990s, which is accelerating with global warming. Our temporal approach identifies the biogeographical conditions that have so far prevented PD in southern European wine-producing areas and predicts that disease risk will increase substantially with increasing temperatures.
Assuntos
Doenças das Plantas , Vitis , Xylella , Vitis/microbiologia , Doenças das Plantas/microbiologia , Europa (Continente) , Teorema de Bayes , Filogenia , Filogeografia , Mudança ClimáticaRESUMO
The bacterium Xylella fastidiosa is mainly transmitted by the meadow spittlebug Philaenus spumarius in Europe, where it has caused significant economic damage to olive and almond trees. Understanding the factors that determine disease dynamics in pathosystems that share similarities can help to design control strategies focused on minimizing transmission chains. Here, we introduce a compartmental model for X. fastidiosa-caused diseases in Europe that accounts for the main relevant epidemiological processes, including the seasonal dynamics of P. spumarius. The model was confronted with epidemiological data from the two major outbreaks of X. fastidiosa in Europe, the olive quick disease syndrome in Apulia, Italy, caused by the subspecies pauca, and the almond leaf scorch disease in Mallorca, Spain, caused by subspecies multiplex and fastidiosa. Using a Bayesian inference framework, we show how the model successfully reproduces the general field data in both diseases. In a global sensitivity analysis, the vector-to-plant and plant-to-vector transmission rates, together with the vector removal rate, were the most influential parameters in determining the time of the infectious host population peak, the incidence peak, and the final number of dead hosts. We also used our model to check different vector-based control strategies, showing that a joint strategy focused on increasing the rate of vector removal while lowering the number of annual newborn vectors is optimal for disease control. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Assuntos
Olea , Prunus dulcis , Xylella , Animais , Modelos Epidemiológicos , Estações do Ano , Teorema de Bayes , Doenças das Plantas/microbiologia , Insetos Vetores/microbiologia , Olea/microbiologiaRESUMO
Xylella fastidiosa is a vascular plant pathogenic bacterium native to the Americas that is causing significant epidemics and economic losses in olive and almonds in Europe, where it is a quarantine pathogen. Since its first detection in 2013 in Italy, mandatory surveys across Europe revealed the presence of the bacterium also in France, Spain, and Portugal. Combining Oxford Nanopore Technologies and Illumina sequencing data, we assembled high-quality complete genomes of seven X. fastidiosa subsp. fastidiosa strains isolated from different plants in Spain, the United States, and Mexico. Comparative genomic analyses discovered differences in plasmid content among strains, including plasmids that had been overlooked previously when using the Illumina sequencing platform alone. Interestingly, in strain CFBP8073, intercepted in France from plants imported from Mexico, three plasmids were identified, including two (plasmids pXF-P1.CFBP8073 and pXF-P2.CFBP8073) not previously described in X. fastidiosa and one (pXF5823.CFBP8073) almost identical to a plasmid described in a X. fastidiosa strain from citrus. Plasmids found in the Spanish strains here were similar to those described previously in other strains from the same subspecies and ST1 isolated in the Balearic Islands and the United States. The genome resources from this work will assist in further studies on the role of plasmids in the epidemiology, ecology, and evolution of this plant pathogen.
Assuntos
Doenças das Plantas , Xylella , Doenças das Plantas/microbiologia , Plasmídeos/genética , Europa (Continente) , Itália , Xylella/genéticaRESUMO
Pathogen introductions have led to numerous disease outbreaks in naive regions of the globe. The plant pathogen Xylella fastidiosa has been associated with various recent epidemics in Europe affecting agricultural crops, such as almond, grapevine, and olive, but also endemic species occurring in natural forest landscapes and ornamental plants. We compared whole-genome sequences of X. fastidiosa subspecies multiplex from America and strains associated with recent outbreaks in southern Europe to infer their likely origins and paths of introduction within and between the two continents. Phylogenetic analyses indicated multiple introductions of X. fastidiosa subspecies multiplex into Italy, Spain, and France, most of which emerged from a clade with limited genetic diversity with a likely origin in California, USA. The limited genetic diversity observed in X. fastidiosa subspecies multiplex strains originating from California is likely due to the clade itself being an introduction from X. fastidiosa subspecies multiplex populations in the southeastern United States, where this subspecies is most likely endemic. Despite the genetic diversity found in some areas in Europe, there was no clear evidence of recombination occurring among introduced X. fastidiosa strains in Europe. Sequence type taxonomy, based on multilocus sequence typing (MLST), was shown, at least in one case, to not lead to monophyletic clades of this pathogen; whole-genome sequence data were more informative in resolving the history of introductions than MLST data. Although additional data are necessary to carefully tease out the paths of these recent dispersal events, our results indicate that whole-genome sequence data should be considered when developing management strategies for X. fastidiosa outbreaks.IMPORTANCEXylella fastidiosa is an economically important plant-pathogenic bacterium that has emerged as a pathogen of global importance associated with a devastating epidemic in olive trees in Italy associated with X. fastidiosa subspecies pauca and other outbreaks in Europe, such as X. fastidiosa subspecies fastidiosa and X. fastidiosa subspecies multiplex in Spain and X. fastidiosa subspecies multiplex in France. We present evidence of multiple introductions of X. fastidiosa subspecies multiplex, likely from the United States, into Spain, Italy, and France. These introductions illustrate the risks associated with the commercial trade of plant material at global scales and the need to develop effective policy to limit the likelihood of pathogen pollution into naive regions. Our study demonstrates the need to utilize whole-genome sequence data to study X. fastidiosa introductions at outbreak stages, since a limited number of genetic markers does not provide sufficient phylogenetic resolution to determine dispersal paths or relationships among strains that are of biological and quarantine relevance.
Assuntos
Genoma Bacteriano , Doenças das Plantas/microbiologia , Xylella/genética , Brasil , Europa (Continente) , Espécies Introduzidas , Sequenciamento Completo do GenomaRESUMO
Xylella fastidiosa is a plant-pathogenic bacterium that causes serious diseases in many crops of economic importance and is a quarantine organism in the European Union. This study reports a de novo-assembled draft genome sequence of the first isolates causing Pierce's disease in Europe: X. fastidiosa subsp. fastidiosa strains XYL1732/17 and XYL2055/17. Both strains were isolated from grapevines (Vitis vinifera) showing Pierce's disease symptoms at two different locations in Mallorca, Spain. The XYL1732/17 genome is 2,444,109 bp long, with a G+C content of 51.5%; it contains 2,359 open reading frames and 48 tRNA genes. The XYL2055/17 genome is 2,456,780 bp long, with a G+C content of 51.5%; it contains 2,384 open reading frames and 48 tRNA genes.
Assuntos
Doenças das Plantas/microbiologia , Vitis , Xylella , Europa (Continente) , Fazendas , Espanha , Vitis/microbiologia , Xylella/genética , Xylella/isolamento & purificaçãoRESUMO
A non-papillate, heterothallic Phytophthora species first isolated in 2001 and subsequently from symptomatic roots, crowns and stems of 33 plant species in 25 unrelated botanical families from 13 countries is formally described here as a new species. Symptoms on various hosts included crown and stem rot, chlorosis, wilting, leaf blight, cankers and gumming. This species was isolated from Australia, Hungary, Israel, Italy, Japan, the Netherlands, Norway, South Africa, Spain, Taiwan, Turkey, the United Kingdom and United States in association with shrubs and herbaceous ornamentals grown mainly in greenhouses. The most prevalent hosts are English ivy (Hedera helix) and Cistus (Cistus salvifolius). The association of the species with acorn banksia (Banksia prionotes) plants in natural ecosystems in Australia, in affected vineyards (Vitis vinifera) in South Africa and almond (Prunus dulcis) trees in Spain and Turkey in addition to infection of shrubs and herbaceous ornamentals in a broad range of unrelated families are a sign of a wide ecological adaptation of the species and its potential threat to agricultural and natural ecosystems. The morphology of the persistent non-papillate ellipsoid sporangia, unique toruloid lobate hyphal swellings and amphigynous antheridia does not match any of the described species. Phylogenetic analysis based on sequences of the ITS rDNA, EF-1α, and ß-tub supported that this organism is a hitherto unknown species. It is closely related to species in ITS clade 7b with the most closely related species being P. sojae. The name Phytophthora niederhauserii has been used in previous studies without the formal description of the holotype. This name is validated in this manuscript with the formal description of Phytophthora niederhauserii Z.G. Abad et J.A. Abad, sp. nov. The name is coined to honor Dr John S. Niederhauser, a notable plant pathologist and the 1990 World Food Prize laureate.
Assuntos
Phytophthora/isolamento & purificação , Doenças das Plantas/microbiologia , Plantas/microbiologia , Austrália , Frutas/microbiologia , Dados de Sequência Molecular , Filogenia , Phytophthora/classificação , Phytophthora/genética , Phytophthora/crescimento & desenvolvimento , Esporos/crescimento & desenvolvimento , Estados UnidosRESUMO
Pierce's disease (PD) is a vector-borne disease caused by the bacteria Xylella fastidiosa, which affects grapevines in the Americas. Currently, vineyards in continental Europe, the world's largest producer of quality wine, have not yet been affected by PD. However, climate change may alter this situation. Here we incorporate the latest regional climate change projections into a climate-driven epidemiological model to assess the risk of PD epidemics in Europe for different levels of global warming. We found a significant increase in risk above + 2 ∘ C in the main wine-producing regions of France, Italy and Portugal, in addition to a critical tipping point above + 3 ∘ C for the possible spread of PD beyond the Mediterranean. The model identifies decreasing risk trends in Spain, as well as contrasting patterns across the continent with different velocities of risk change and epidemic growth rates. Although there is some uncertainty in model projections over time, spatial patterns of risk are consistent across different climate models. Our study provides a comprehensive analysis of the future of PD at multiple spatial scales (country, Protected Designation of Origin and vineyard), revealing where, why and when PD could become a new threat to the European wine industry.
Assuntos
Aquecimento Global , Doenças das Plantas , Vitis , Xylella , Doenças das Plantas/microbiologia , Vitis/microbiologia , Xylella/patogenicidade , Europa (Continente)/epidemiologia , Vinho , Epidemias , Fazendas , Mudança ClimáticaRESUMO
The vector-borne bacterium Xylella fastidiosa is responsible for Pierce's disease (PD), a lethal grapevine disease that originated in the Americas. The international plant trade is expanding the geographic range of this pathogen, posing a new threat to viticulture worldwide. To assess the potential incidence of PD, we have built a dynamic epidemiological model based on the response of 36 grapevine varieties to the pathogen in inoculation assays and on the vectors' distribution when this information is available. Key temperature-driven epidemiological processes, such as PD symptom development and recovery, are mechanistically modelled. Integrating into the model high-resolution spatiotemporal climatic data from 1981 onward and different infectivity (R0) scenarios, we show how the main wine-producing areas thrive mostly in non-risk, transient, or epidemic-risk zones with potentially low growth rates in PD incidence. Epidemic-risk zones with moderate to high growth rates are currently marginal outside the US. However, a global expansion of epidemic-risk zones coupled with small increments in the disease growth rate is projected for 2050. Our study globally downscales the risk of PD establishment while highlighting the importance of considering climate variability, vector distribution, and an invasive criterion as factors to obtain better PD risk maps.
Assuntos
Vitis , Xylella , Vitis/microbiologia , Doenças das Plantas/microbiologia , Temperatura , Suscetibilidade a DoençasRESUMO
The emergence of Xylella fastidiosa (Xf) in the Balearic Islands in October 2016 was a major phytosanitary challenge with international implications. Immediately after its detection, eradication and containment measures included in Decision 2015/789 were implemented. Surveys intensified during 2017, which soon revealed that the pathogen was widely distributed on the islands and eradication measures were no longer feasible. In this review, we analyzed the control measures carried out by the Balearic Government in compliance with European legislation, as well as the implementation of its control action plan. At the same time, we contrasted them with the results of scientific research accumulated since 2017 on the epidemiological situation. The case of Xf in the Balearic Islands is paradigmatic since it concentrates on a small territory with one of the widest genetic diversities of Xf affecting crops and forest ecosystems. We also outline the difficulties of anticipating unexpected epidemiological situations in the legislation on harmful exotic organisms on which little biological information is available. Because Xf has become naturalized in the islands, coexistence alternatives based on scientific knowledge are proposed to reorient control strategies towards the main goal of minimizing damage to crops and the landscape.
RESUMO
The recent introductions of the bacterium Xylella fastidiosa (Xf) into Europe are linked to the international plant trade. However, both how and when these entries occurred remains poorly understood. Here, we show how almond scorch leaf disease, which affects ~79% of almond trees in Majorca (Spain) and was previously attributed to fungal pathogens, was in fact triggered by the introduction of Xf around 1993 and subsequently spread to grapevines (Pierce's disease). We reconstructed the progression of almond leaf scorch disease by using broad phylogenetic evidence supported by epidemiological data. Bayesian phylogenetic inference predicted that both Xf subspecies found in Majorca, fastidiosa ST1 (95% highest posterior density, HPD: 1990-1997) and multiplex ST81 (95% HPD: 1991-1998), shared their most recent common ancestors with Californian Xf populations associated with almonds and grapevines. Consistent with this chronology, Xf-DNA infections were identified in tree rings dating to 1998. Our findings uncover a previously unknown scenario in Europe and reveal how Pierce's disease reached the continent.
Assuntos
Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Prunus dulcis/microbiologia , Xylella/genética , Filogenia , Espanha , Madeira/microbiologia , Xylella/patogenicidadeRESUMO
Phytophthora ramorum, the causal agent of sudden oak death and ramorum blight, is known to exist as three distinct clonal lineages which can only be distinguished by performing molecular marker-based analyses. However, in the recent literature there exists no consensus on naming of these lineages. Here we propose a system for naming clonal lineages of P. ramorum based on a consensus established by the P. ramorum research community. Clonal lineages are named with a two letter identifier for the continent on which they were first found (e.g., NA = North America; EU = Europe) followed by a number indicating order of appearance. Clonal lineages known to date are designated NA1 (mating type: A2; distribution: North America; environment: forest and nurseries), NA2 (A2; North America; nurseries), and EU1 (predominantly A1, rarely A2; Europe and North America; nurseries and gardens). It is expected that novel lineages or new variants within the existing three clonal lineages could in time emerge.
Assuntos
Filogenia , Phytophthora/classificação , Phytophthora/citologia , Doenças das Plantas/microbiologia , Quercus/microbiologia , Terminologia como Assunto , Células Clonais , Genótipo , Geografia , Phytophthora/genética , Phytophthora/isolamento & purificaçãoRESUMO
Sixteen Pythium isolates from diverse hosts and locations, which showed similarities in their morphology and sequences of the internal transcribed spacer (ITS) region of their rRNA gene, were investigated. As opposed to the generally accepted view, within single isolates ITS sequence variations were consistently found mostly as part of a tract of identical bases (A-T) within ITS1, and of GT or GTTT repeats within the ITS2 sequence. Thirty-one different ITS sequences obtained from 39 cloned ITS products from the 16 isolates showed high sequence and length polymorphisms within and between isolates. However, in a phylogenetic analysis, they formed a cluster distinct from those of other Pythium species. Additional sequencing of two nuclear genes (elongation factor 1 alpha and beta-tubulin) and one mitochondrial gene (nadh1) revealed high levels of heterozygosity as well as polymorphism within and between isolates, with some isolates possessing two or more alleles for each of the nuclear genes. In contrast to the observed variation in the ITS and other gene areas, all isolates were phenotypically similar. Pythium mercuriale sp. nov. (Pythiaceae) is characterized by forming thin-walled chlamydospores, subglobose to obovoid, papillate sporangia proliferating internally and smooth-walled oogonia surrounded by multiple antheridia. Maximum likelihood phylogenetic analyses based on both ITS and beta-tubulin sequence data place P. mercuriale in a clade between Pythium and Phytophthora.
Assuntos
DNA Espaçador Ribossômico/genética , Genes de RNAr , Polimorfismo Genético , Pythium/classificação , Pythium/genética , Proteínas de Algas/genética , Alelos , Análise por Conglomerados , DNA de Algas/química , DNA de Algas/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , Genótipo , Heterozigoto , Dados de Sequência Molecular , Fator 1 de Elongação de Peptídeos/genética , Fenótipo , Filogenia , Pythium/citologia , Pythium/isolamento & purificação , Análise de Sequência de DNA , Tubulina (Proteína)/genéticaRESUMO
A new species of Pythium collected from grapevine roots (Vitis vinifera) in South Africa and roots of common beet (Beta vulgaris) in Majorca, Spain, is described. The phylogenetic position of the new species was investigated by multigene sequence analyses of the internal transcribed spacers (ITS1 and ITS2) of the rDNA region, as well as three other nuclear and three mitochondrial coding genes. Maximum likelihood phylogenetic analyses based on ITS rDNA and concatenated beta-tubulin and cytrochrome c oxidase II alignment place Pythium recalcitrans together with P. sylvaticum and P. intermedium. Pythium recalcitrans sp. nov. is morphologically almost indistinguishable from other Pythium species that only form hyphal swellings in culture. However its species status is justified by the distinctiveness of the DNA sequences in all the genes examined. In culture P. recalcitrans exhibits fast radial growth, abundant spherical to subglobose hyphal swellings but produces no zoosporangia. Sexual structures are not seen in agar media but form in autoclaved grass blades floated on water. Multiple antheridia (1-7) are encountered with most of them diclinous and crook-necked. Oospores are thin-walled and either aplerotic or plerotic. P. recalcitrans was pathogenic to seedlings of Beta vulgaris and Solanum lycopersicum.
Assuntos
Genes Fúngicos/genética , Filogenia , Pythium/classificação , Pythium/genética , DNA Espaçador Ribossômico/genética , Dados de Sequência Molecular , Pythium/citologia , Pythium/crescimento & desenvolvimento , Vitis/microbiologiaRESUMO
In a survey of Phytophthora associated with alder decline in Poland, several isolates of a homothallic Phytophthora sp., which could not be assigned to other taxa including Phytophthora alni subspecies, were consistently recovered from rhizosphere soil samples. Their morphology and pathogenicity, as well as sequence data for three nuclear regions (internal transcribed spacer rDNA, elongation factor-1alpha and beta-tubulin) and a coding mitochondrial DNA region (nadh1), were examined. The new Phytophthora species is characterized by the moderate to slow growth rate of its colony in carrot agar at 20 degrees C, high optimal (c. 30 degrees C) and maximum (c. 38 degrees C) growth temperatures, formation of catenulate, often lateral, hyphal swellings, large chlamydospores in agar media and in soil extract, persistent, ovoid to ellipsoid nonpapillate sporangia and large oogonia with paragynous and sometimes amphigynous antheridia. Phytophthora polonica was slightly pathogenic to alder twigs and not pathogenic to trunks of several tree species. In a phylogenetic analysis using either Bayesian inference or maximum likelihood methods, P. polonica falls in clade 8 'sensu Kroon et al. (2004)' of Phytophthora.
Assuntos
Alnus/microbiologia , Phytophthora/isolamento & purificação , Microbiologia do Solo , DNA Espaçador Ribossômico/genética , Complexo I de Transporte de Elétrons/genética , Dados de Sequência Molecular , Fator 1 de Elongação de Peptídeos/genética , Filogenia , Phytophthora/classificação , Phytophthora/patogenicidade , Doenças das Plantas/microbiologia , Polônia , Quercus/microbiologia , Tubulina (Proteína)/genéticaRESUMO
Three types of multihyphal structures, stromata, sporangiomata and chlamydosori, are described for the plant pathogen Phytophthora ramorum. Their morphology, morphogenesis and position on the host organ were observed by dissecting, compound and scanning electron microscopy. Stromata were consistently formed one to two weeks after zoospore inoculation of detached leaves and fruits of an assortment of Mediterranean sclerophyll shrubs. Stroma initials appeared subcuticularly or subepidermally and developed as small hyphal aggregates by repeated branching, budding, swelling and interweaving, eventually forming a prosenchyma. They always emerged through the adaxial side of the leaf by rupture of the overlying host tissue. Occasionally sporangia and chlamydosori (packed clusters of chlamydospores) were formed on the stromata. Sporangiomata bore short sporangiophores and clusters of 20-100 sporangia and resembled sporodochia of the mitosporic fungi. The biological significance of these multihyphal structures is discussed. Some epidemiological aspects were also studied: several understorey species of the holm oak (Quercus ilex) woodland were susceptible to in vitro infection with three isolates of P. ramorum originally collected from different ornamental hosts. The risk of spread to this ecosystem is evaluated.