Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Int J Vitam Nutr Res ; 93(6): 498-506, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35965421

RESUMO

Background: The aim of this study was to evaluate the effect of propolis or metformin versus placebo on glycemic control in pharmacological treatment-naïve patients with type 2 diabetes mellitus (T2DM). Methods: A double-blind, randomized, placebo-controlled in parallel groups clinical trial was performed in 36 pharmacological treatment-naïve patients with T2DM. They received propolis (300 mg), metformin (850 mg), or placebo twice daily before breakfast and dinner for 12 weeks. At the beginning and end of the study, fasting plasma glucose (FPG), 2-h postload glucose (2-h PG) during a 75-g oral glucose tolerance test, glycated hemoglobin A1c (A1C) and a metabolic profile were measured. Areas under the curve (AUC) of glucose and insulin, total insulin secretion (insulinogenic index), the first phase of insulin secretion (Stumvoll index), and insulin sensitivity (Matsuda index) were calculated. Statistical analyses: Kruskal-Wallis, Mann-Whitney U and Wilcoxon tests. Results: The propolis and metformin groups exhibited significant reductions in FPG (p=0.009 and p=0.001, respectively), 2-h PG (p=0.034 and p=0.001, respectively) levels, AUC of insulin, Stumvoll index, and an increment in the Matsuda index. The comparison of the changes from baseline to the end showed significant differences between placebo and propolis in FPG (p=0.004) and A1C (p=0.049) levels, while between placebo and metformin were in FPG (p=0.002), 2-h PG (p=0.004) and A1C (p=0.007) levels. Conclusions: The administration of propolis and metformin compared to placebo reduced FPG and A1C levels; in addition, metformin decreased 2-h PG, AUC of glucose and insulin, high-density lipoprotein cholesterol, and increased the insulin sensitivity.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Metformina , Própole , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Metformina/uso terapêutico , Metformina/farmacologia , Própole/uso terapêutico , Hemoglobinas Glicadas , Glicemia/metabolismo , Insulina/metabolismo , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/farmacologia , Método Duplo-Cego
2.
Int J Mol Sci ; 24(23)2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38069404

RESUMO

Chronic opioid intake leads to several brain changes involved in the development of dependence, whereby an early hedonistic effect (liking) extends to the need to self-administer the drug (wanting), the latter being mostly a prefrontal-striatal function. The development of animal models for voluntary oral opioid intake represents an important tool for identifying the cellular and molecular alterations induced by chronic opioid use. Studies mainly in humans have shown that polydrug use and drug dependence are shared across various substances. We hypothesize that an animal bred for its alcohol preference would develop opioid dependence and further that this would be associated with the overt cortical abnormalities clinically described for opioid addicts. We show that Wistar-derived outbred UChB rats selected for their high alcohol preference additionally develop: (i) a preference for oral ingestion of morphine over water, resulting in morphine intake of 15 mg/kg/day; (ii) marked opioid dependence, as evidenced by the generation of strong withdrawal signs upon naloxone administration; (iii) prefrontal cortex alterations known to be associated with the loss of control over drug intake, namely, demyelination, axonal degeneration, and a reduction in glutamate transporter GLT-1 levels; and (iv) glial striatal neuroinflammation and brain oxidative stress, as previously reported for chronic alcohol and chronic nicotine use. These findings underline the relevance of polydrug animal models and their potential in the study of the wide spectrum of brain alterations induced by chronic morphine intake. This study should be valuable for future evaluations of therapeutic approaches for this devastating condition.


Assuntos
Dependência de Morfina , Transtornos Relacionados ao Uso de Substâncias , Humanos , Ratos , Animais , Morfina/efeitos adversos , Analgésicos Opioides/farmacologia , Ratos Wistar , Naloxona/farmacologia , Encéfalo , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Etanol/farmacologia , Antagonistas de Entorpecentes/farmacologia
3.
Addict Biol ; 27(2): e13140, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35229957

RESUMO

Previous studies showed that vagotomy markedly inhibits alcohol self-administration. Present studies hypothesised that vagotomy significantly adds to the inhibition of alcohol relapse induced by drugs that reduce the alcohol-induced hyperglutamatergic state (e.g., N-acetylcysteine + acetylsalicylic acid). The alcohol relapse paradigm tested gauges the elevated alcohol intake observed in animals that had consumed ethanol chronically, were subjected to a prolonged alcohol deprivation and are subsequently allowed ethanol re-access. Ethanol-drinker rats (UChB) were exposed to 10% and 20% ethanol and water concurrently for 4 months, were alcohol deprived for 14 days and were thereafter allowed re-access to the ethanol solutions. An initial binge-like drinking episode is observed upon ethanol re-access, followed by a protracted elevated ethanol intake that exceeds the predeprivation intake baseline. Prior to ethanol re-access, animals were (i) administered N-acetylcysteine (40 mg/kg/day) + acetylsalicylic acid (15 mg/kg/day), (ii) were bilaterally vagotomised, (iii) were exposed to both treatments or (iv) received no treatments. The initial binge-like relapse intake and a protracted elevated ethanol intake observed after repeated ethanol deprivations/re-access cycles were inhibited by 50%-70% by the administration of N-acetylcysteine + acetylsalicylic acid and by 40%-70% by vagotomy, while the combined vagotomy plus N-acetylcysteine + acetylsalicylic acid treatment inhibited both the initial binge-like intake and the protracted ethanol intake by >95% (p < 0.001), disclosing a dual mechanism of ethanol relapse and subsequent inhibition beyond that induced by either treatment alone. Future exploration into the mechanism by which vagal activity contributes to ethanol relapse may have translational promise.


Assuntos
Consumo de Bebidas Alcoólicas , Etanol , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Animais , Doença Crônica , Etanol/farmacologia , Ratos , Recidiva , Autoadministração
4.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35409269

RESUMO

An animal model of voluntary oral morphine consumption would allow for a pre-clinical evaluation of new treatments aimed at reducing opioid intake in humans. However, the main limitation of oral morphine consumption in rodents is its bitter taste, which is strongly aversive. Taste aversion is often overcome by the use of adulterants, such as sweeteners, to conceal morphine taste or bitterants in the alternative bottle to equalize aversion. However, the adulterants' presence is the cause for consumption choice and, upon removal, the preference for morphine is not preserved. Thus, current animal models are not suitable to study treatments aimed at reducing consumption elicited by morphine itself. Since taste preference is a learned behavior, just-weaned rats were trained to accept a bitter taste, adding the bitterant quinine to their drinking water for one week. The latter was followed by allowing the choice of quinine or morphine (0.15 mg/mL) solutions for two weeks. Then, quinine was removed, and the preference for morphine against water was evaluated. Using this paradigm, we show that rats highly preferred the consumption of morphine over water, reaching a voluntary morphine intake of 15 mg/kg/day. Morphine consumption led to significant analgesia and hyperlocomotion, and to a marked deprivation syndrome following the administration of the opioid antagonist naloxone. Voluntary morphine consumption was also shown to generate brain oxidative stress and neuroinflammation, signs associated with opioid dependence development. We present a robust two-bottle choice animal model of oral morphine self-administration for the evaluation of therapeutic interventions for the treatment of morphine dependence.


Assuntos
Dependência de Morfina , Transtornos Relacionados ao Uso de Opioides , Animais , Modelos Animais de Doenças , Morfina/farmacologia , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Quinina/farmacologia , Quinina/uso terapêutico , Ratos , Paladar , Água
5.
Addict Biol ; 26(1): e12853, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31733014

RESUMO

Chronic alcohol intake leads to neuroinflammation and cell injury, proposed to result in alterations that perpetuate alcohol intake and cued relapse. Studies show that brain oxidative stress is consistently associated with alcohol-induced neuroinflammation, and literature implies that oxidative stress and neuroinflammation perpetuate each other. In line with a self-perpetuating mechanism, it is hypothesized that inhibition of either oxidative stress or neuroinflammation could reduce chronic alcohol intake and relapse. The present study conducted on alcohol-preferring rats shows that chronic ethanol intake was inhibited by 50% to 55% by the oral administration of low doses of either the antioxidant N-acetylcysteine (40 mg/kg/d) or the anti-inflammatory aspirin (ASA; 15 mg/kg/d), while the co-administration of both dugs led to a 70% to 75% (P < .001) inhibition of chronic alcohol intake. Following chronic alcohol intake, a prolonged alcohol deprivation, and subsequent alcohol re-access, relapse drinking resulted in blood alcohol levels of 95 to 100 mg/dL in 60 minutes, which were reduced by 60% by either N-acetylcysteine or aspirin and by 85% by the co-administration of both drugs (blood alcohol: 10 to 15 mg/dL; P < .001). Alcohol intake either on the chronic phase or following deprivation and re-access led to a 50% reduction of cortical glutamate transporter GLT-1 levels, while aspirin administration fully returned GLT-1 to normal levels. N-acetylcysteine administration did not alter GLT-1 levels, while N-acetylcysteine may activate the cystine/glutamate transport xCT, presynaptically inhibiting relapse. Overall, the study suggests that a neuroinflammation/oxidative stress self-perpetuation cycle maintains chronic alcohol intake and relapse drinking. The co-administration of anti-inflammatory and antioxidant agents may have translational value in alcohol-use disorders.


Assuntos
Acetilcisteína/uso terapêutico , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Aspirina/uso terapêutico , Consumo Excessivo de Bebidas Alcoólicas/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Alcoolismo/tratamento farmacológico , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Doença Crônica , Etanol/administração & dosagem , Transportador 2 de Aminoácido Excitatório , Feminino , Ratos , Recidiva , Autoadministração
6.
Addict Biol ; 26(4): e13018, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33508889

RESUMO

Gut microbiota is known to be transferred from the mother to their offspring. This study determines whether the innate microbiota of rats selectively bred for generations as high alcohol drinkers play a role in their alcohol intake. Wistar-derived high-drinker UChB rats (intake 10-g ethanol/kg/day) administered nonabsorbable oral antibiotics before allowing access to alcohol, reducing their voluntary ethanol intake by 70%, an inhibition that remained after the antibiotic administration was discontinued. Oral administration of Lactobacillus rhamnosus Gorbach-Goldin (GG) induced the synthesis of FGF21, a vagal ß-Klotho receptor agonist, and partially re-invoked a mechanism that reduces alcohol intake. The vagus nerve constitutes the main axis transferring gut microbiota information to the brain ("microbiota-gut-brain" axis). Bilateral vagotomy inhibited rat alcohol intake by 75%. Neither antibiotic treatment nor vagotomy affected total fluid intake. A microbiota-mediated marked inflammatory environment was observed in the gut of ethanol-naïve high-drinker rats, as gene expression of proinflammatory cytokines (TNF-α; IL-6; IL-1ß) was significantly reduced by nonabsorbable antibiotic administration. Gut cytokines are known to activate the vagus nerve, while vagal activation induces pro-rewarding effects in nucleus accumbens. Both alcoholics and alcohol-preferring rats share a marked preference for sweet tastes-likely an evolutionary trait to seek sweet fermented fruits. Saccharin intake by UChB rats was inhibited by 75%-85% by vagotomy or oral antibiotic administration, despite saccharin-induced polydipsia. Overall, data indicate that the mechanisms that normally curtail heavy drinking are inhibited in alcohol-preferring animals and inform a gut microbiota origin. Whether it applies to other mammals and humans merits further investigation.


Assuntos
Alcoolismo/metabolismo , Microbioma Gastrointestinal/fisiologia , Animais , Etanol/administração & dosagem , Genótipo , Masculino , Ratos , Ratos Wistar , Sacarina/administração & dosagem , Autoadministração
7.
Int J Mol Sci ; 22(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806988

RESUMO

The effect of perinatal asphyxia (PA) on oligodendrocyte (OL), neuroinflammation, and cell viability was evaluated in telencephalon of rats at postnatal day (P)1, 7, and 14, a period characterized by a spur of neuronal networking, evaluating the effect of mesenchymal stem cell (MSCs)-treatment. The issue was investigated with a rat model of global PA, mimicking a clinical risk occurring under labor. PA was induced by immersing fetus-containing uterine horns into a water bath for 21 min (AS), using sibling-caesarean-delivered fetuses (CS) as controls. Two hours after delivery, AS and CS neonates were injected with either 5 µL of vehicle (10% plasma) or 5 × 104 MSCs into the lateral ventricle. Samples were assayed for myelin-basic protein (MBP) levels; Olig-1/Olig-2 transcriptional factors; Gglial phenotype; neuroinflammation, and delayed cell death. The main effects were observed at P7, including: (i) A decrease of MBP-immunoreactivity in external capsule, corpus callosum, cingulum, but not in fimbriae of hippocampus; (ii) an increase of Olig-1-mRNA levels; (iii) an increase of IL-6-mRNA, but not in protein levels; (iv) an increase in cell death, including OLs; and (v) MSCs treatment prevented the effect of PA on myelination, OLs number, and cell death. The present findings show that PA induces regional- and developmental-dependent changes on myelination and OLs maturation. Neonatal MSCs treatment improves survival of mature OLs and myelination in telencephalic white matter.


Assuntos
Asfixia/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Bainha de Mielina/metabolismo , Animais , Animais Recém-Nascidos , Índice de Apgar , Asfixia/etiologia , Biomarcadores , Encéfalo/metabolismo , Encéfalo/patologia , Diferenciação Celular , Sobrevivência Celular , Citocinas/genética , Citocinas/metabolismo , Expressão Gênica , Hipocampo/metabolismo , Hipocampo/patologia , Imuno-Histoquímica , Mediadores da Inflamação , Células-Tronco Mesenquimais/citologia , Bainha de Mielina/patologia , Neuroglia/imunologia , Neuroglia/metabolismo , Oligodendroglia/metabolismo , RNA Mensageiro , Ratos
8.
Int J Mol Sci ; 21(20)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096871

RESUMO

Perinatal Asphyxia (PA) is a leading cause of motor and neuropsychiatric disability associated with sustained oxidative stress, neuroinflammation, and cell death, affecting brain development. Based on a rat model of global PA, we investigated the neuroprotective effect of intranasally administered secretome, derived from human adipose mesenchymal stem cells (MSC-S), preconditioned with either deferoxamine (an hypoxia-mimetic) or TNF-α+IFN-γ (pro-inflammatory cytokines). PA was generated by immersing fetus-containing uterine horns in a water bath at 37 °C for 21 min. Thereafter, 16 µL of MSC-S (containing 6 µg of protein derived from 2 × 105 preconditioned-MSC), or vehicle, were intranasally administered 2 h after birth to asphyxia-exposed and control rats, evaluated at postnatal day (P) 7. Alternatively, pups received a dose of either preconditioned MSC-S or vehicle, both at 2 h and P7, and were evaluated at P14, P30, and P60. The preconditioned MSC-S treatment (i) reversed asphyxia-induced oxidative stress in the hippocampus (oxidized/reduced glutathione); (ii) increased antioxidative Nuclear Erythroid 2-Related Factor 2 (NRF2) translocation; (iii) increased NQO1 antioxidant protein; (iv) reduced neuroinflammation (decreasing nuclearNF-κB/p65 levels and microglial reactivity); (v) decreased cleaved-caspase-3 cell-death; (vi) improved righting reflex, negative geotaxis, cliff aversion, locomotor activity, anxiety, motor coordination, and recognition memory. Overall, the study demonstrates that intranasal administration of preconditioned MSC-S is a novel therapeutic strategy that prevents the long-term effects of perinatal asphyxia.


Assuntos
Asfixia Neonatal/terapia , Hipocampo/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Fármacos Neuroprotetores/farmacologia , Administração Intranasal , Animais , Índice de Apgar , Asfixia Neonatal/patologia , Comportamento Animal , Morte Celular/efeitos dos fármacos , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Inflamação/patologia , Inflamação/terapia , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Gravidez , Ratos Wistar
9.
Gene Ther ; 26(10-11): 407-417, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30820030

RESUMO

Studies reviewed show that lentiviral gene therapy directed either at inhibiting the synthesis of brain acetaldehyde generated from ethanol or at degrading brain acetaldehyde fully prevent ethanol intake by rats bred for their high alcohol preference. However, after animals have chronically consumed alcohol, the above gene therapy did not inhibit alcohol intake, indicating that in the chronic ethanol intake condition brain acetaldehyde is no longer the compound that generates the continued alcohol reinforcement. Oxidative stress and neuroinflammation generated by chronic ethanol intake are strongly associated with the perpetuation of alcohol consumption and alcohol relapse "binge drinking". Mesenchymal stem cells, referred to as guardians of inflammation, release anti-inflammatory cytokines and antioxidant products. The intravenous delivery of human mesenchymal stem cells or the intranasal administration of mesenchymal stem cell-generated exosomes reverses both (i) alcohol-induced neuro-inflammation and (ii) oxidative stress, and greatly (iii) inhibits (80-90%) chronic alcohol intake and relapse binge-drinking. The therapeutic effect of mesenchymal stem cells is mediated by increased levels of the brain GLT-1 glutamate transporter, indicating that glutamate signaling is pivotal for alcohol relapse. Human mesenchymal stem cells and the products released by these cells may have translational value in the treatment of alcohol-use disorders.


Assuntos
Alcoolismo/terapia , Consumo Excessivo de Bebidas Alcoólicas/terapia , Terapia Genética/métodos , Pesquisa Translacional Biomédica/métodos , Animais , Humanos , Transplante de Células-Tronco Mesenquimais/métodos
10.
Addict Biol ; 24(1): 17-27, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29044813

RESUMO

Neuroinflammation has been reported to follow chronic ethanol intake and may perpetuate alcohol consumption. Present studies determined the effect of human mesenchymal stem cells (hMSCs), known for their anti-inflammatory action, on chronic ethanol intake and relapse-like ethanol intake in a post-deprivation condition. Rats were allowed 12-17 weeks of chronic voluntary ethanol (10% and 20% v/v) intake, after which a single dose of activated hMSCs (5 × 105 ) was injected into a brain lateral ventricle. Control animals were administered vehicle. After assessing the effect of hMSCs on chronic ethanol intake for 1 week, animals were deprived of ethanol for 2 weeks and thereafter an ethanol re-access of 60 min was allowed to determine relapse-like intake. A single administration of activated hMSCs inhibited chronic alcohol consumption by 70% (P < 0.001), an effect seen within the first 24 hours of hMSCs administration, and reduced relapse-like drinking by 80% (P < 0.001). In the relapse-like condition, control animals attain blood ethanol ('binge-like') levels >80 mg/dl. The single hMSC administration reduced relapse-like blood ethanol levels to 20 mg/dl. Chronic ethanol intake increased by 250% (P < 0.001) the levels of reactive oxygen species in hippocampus, which were markedly reduced by hMSC administration. Astrocyte glial acidic fibrillary protein immunoreactivity, a hallmark of neuroinflammation, was increased by 60-80% (P < 0.001) by chronic ethanol intake, an effect that was fully abolished by the administration of hMSCs. This study supports the neuroinflammation-chronic ethanol intake hypothesis and suggest that mesenchymal stem cell administration may be considered in the treatment of alcohol use disorders.


Assuntos
Consumo de Bebidas Alcoólicas/imunologia , Astrócitos/imunologia , Consumo Excessivo de Bebidas Alcoólicas/imunologia , Encéfalo/imunologia , Depressores do Sistema Nervoso Central/administração & dosagem , Etanol/administração & dosagem , Proteína Glial Fibrilar Ácida/imunologia , Inflamação/imunologia , Transplante de Células-Tronco Mesenquimais , Alcoolismo/imunologia , Animais , Doença Crônica , Humanos , Ventrículos Laterais , Ratos , Recidiva , Autoadministração
11.
Addict Biol ; 24(5): 994-1007, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30239077

RESUMO

Chronic ethanol consumption leads to brain oxidative stress and neuroinflammation, conditions known to potentiate and perpetuate each other. Several studies have shown that neuroinflammation results in increases in chronic ethanol consumption. Recent reports showed that the intra-cerebroventricular administration of mesenchymal stem cells to rats consuming alcohol chronically markedly inhibited oxidative-stress, abolished neuroinflammation and greatly reduced chronic alcohol intake and post deprivation relapse-like alcohol intake. However, the intra-cerebroventricular administration of living cells is not suitable as a treatment of a chronic condition. The present study aimed at inhibiting ethanol intake by the non-invasive intranasal administration of human mesenchymal stem cell products: exosomes, microvesicles (40 to 150 nm) with marked antioxidant activity extruded from mesenchymal stem cells. The exosome membrane can fuse with the plasma membrane of cells in different tissues, thus delivering their content intracellularly. The study showed that the weekly intranasal administration of mesenchymal stem cell-derived exosomes to rats consuming alcohol chronically (1) inhibited their ethanol intake by 84 percent and blunted the relapse-like 'binge' drinking that follows an alcohol deprivation period and ethanol re-access. (2) Intranasally administered exosomes were found in the brain within 24 hours; (3) fully reversed both alcohol-induced hippocampal oxidative-stress, evidenced by a lower ratio of oxidized to reduced glutathione, and neuroinflammation, shown by a reduced astrocyte activation and microglial density; and (4) increased glutamate transporter GLT1 expression in nucleus accumbens, counteracting the inhibition of glutamate transporter activity, reportedly depressed under oxidative-stress conditions. Possible translational implications are envisaged.


Assuntos
Consumo de Bebidas Alcoólicas/prevenção & controle , Exossomos/transplante , Transplante de Células-Tronco Mesenquimais/métodos , Estresse Oxidativo/fisiologia , Administração Intranasal , Consumo de Bebidas Alcoólicas/fisiopatologia , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Astrócitos/fisiologia , Doença Crônica , Feminino , Hipocampo/metabolismo , Humanos , Injeções Intraventriculares , Microglia/fisiologia , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/metabolismo , RNA Mensageiro/metabolismo , Ratos Wistar , Prevenção Secundária , Gordura Subcutânea/citologia , Síndrome de Abstinência a Substâncias/prevenção & controle
12.
Alcohol Clin Exp Res ; 42(10): 1988-1999, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30035805

RESUMO

BACKGROUND: Life expectancy is greatly reduced in individuals presenting alcohol use disorders and chronic smoking. Literature studies suggest that common mechanisms may apply to the chronic use and relapse of both alcohol and nicotine. It is hypothesized that an increased brain oxidative stress and neuroinflammation are involved in perpetuating these conditions and that a common treatment may be considered for both. METHODS: Rats bred as high ethanol (EtOH) drinkers (UChB) were allowed chronic access to EtOH solutions and water and were thereafter deprived of EtOH for a prolonged period, subsequently allowing reaccess to EtOH, which leads to marked relapse binge-like drinking. Separately, EtOH-naïve animals were chronically administered nicotine intraperitoneally and tested under either a conditioned place preference (CPP) reinstatement condition or allowed a free-choice drinking of nicotine solutions and water. Oral N-acetylcysteine (NAC) (100 mg/kg) was administered daily to the animals to determine its effect on both chronic voluntary EtOH and nicotine intake, on EtOH relapse and nicotine-CPP reinstatement. Oxidative stress was evaluated in hippocampus as the oxidized/reduced glutathione ratio (GSSG/GSH), and neuroinflammation by glial fibrillary acidic protein (GFAP) immunohistochemistry. RESULTS: Marked increases in hippocampal oxidative stress (GSSG/GSH) and neuroinflammation (astrocyte reactivity, GFAP) were observed after both chronic EtOH and chronic nicotine treatment. Oral NAC administration (i) fully abolished the increased oxidative stress and the neuroinflammation induced by both drugs, (ii) greatly inhibited EtOH intake (70%) and EtOH relapse binge-like drinking (76%), and (iii) markedly inhibited (90%) voluntary nicotine intake and fully suppressed nicotine-CPP reinstatement. CONCLUSIONS: Data indicate that (i) oxidative stress and neuroinflammation are tightly associated with chronic EtOH and nicotine intake and drug relapse and (ii) NAC inhibits the relapse for both drugs, suggesting that the oral chronic administration of NAC may be of value in the concomitant treatment of alcohol and nicotine use disorders.


Assuntos
Acetilcisteína/administração & dosagem , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Consumo de Bebidas Alcoólicas/psicologia , Etanol/administração & dosagem , Nicotina/administração & dosagem , Reforço Psicológico , Consumo de Bebidas Alcoólicas/genética , Animais , Feminino , Ratos , Ratos Transgênicos , Ratos Wistar , Recidiva , Autoadministração
13.
Alcohol Alcohol ; 52(1): 1-4, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27651282

RESUMO

Study describes the blockade of relapse-like alcohol drinking by mesenchymal stem cells (MSCs). High alcohol-intake bred rats consumed alcohol for 3 months and were subjected to repeated alcohol deprivations for 7-14 days, followed by alcohol reaccess. Upon reaccess, animals consumed 2.2 g alcohol/kg in 60 minutes. A single intra-cerebroventricular MSC administration inhibited relapse-like drinking up to 80-85% for 40 days (P < 0.001). An alcohol-use-disorder was prevented.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Consumo de Bebidas Alcoólicas/terapia , Modelos Animais de Doenças , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Sobrevivência Celular/fisiologia , Feminino , Infusões Intraventriculares , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Recidiva
14.
Am J Ophthalmol ; 260: 84-90, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38103875

RESUMO

PURPOSE: To describe the ophthalmology primary practice emphasis area by underrepresented in medicine (URiM) status using the American Board of Ophthalmology (ABO) Diplomates database. DESIGN: Retrospective cohort study. METHODS: The study was based on a retrospective review of the ABO database from 1992 to 2020. The datapoints recorded included age at time of graduation and at time of certification, sex/gender, self-reported race/ethnicity, year of graduation and of certification, region of practice in the United States, and the self-reported primary practice emphasis area within ophthalmology. The URiM cohort included self-identified Black, Hispanic/Latinx, American Indian and Alaska Native, and Native Hawaiian and Other Pacific Islander individuals. Statistical analysis was conducted using Pearson χ2, Student t, and Fisher exact tests. RESULTS: A total of 575 (10.1%) ophthalmologists self-identified as URiM, vs 5132 (89.9%) as non-URiM. Diplomates who were URiM were more likely to be female and to be older at the time of ABO certification than those who were not URiM (P < .001). Over time, there was a steady decrease in the percentage of diplomates who were URiM (P < .001). There was a statistically significantly higher percentage of URiM ophthalmologists who reported glaucoma as their primary area of emphasis (P = .039) and non-URiM ophthalmologists who reported oncology, pathology, international, or genetics (P = .015), but no significant differences in the remaining subspecialties (P ≥ .123). CONCLUSIONS: There were modest differences in reported ophthalmology primary practice emphasis areas between URiM and non-URiM ABO diplomates. Despite efforts to increase diversity in ophthalmology, the percentage of graduating URiM ABO diplomates has decreased over the past 2 decades.


Assuntos
Oftalmologistas , Feminino , Humanos , Masculino , Certificação , Etnicidade , Estudos Retrospectivos , Estados Unidos , Grupos Raciais
15.
CNS Neurosci Ther ; 30(4): e14517, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37927136

RESUMO

BACKGROUND: Morphine is an opiate commonly used in the treatment of moderate to severe pain. However, prolonged administration can lead to physical dependence and strong withdrawal symptoms upon cessation of morphine use. These symptoms can include anxiety, irritability, increased heart rate, and muscle cramps, which strongly promote morphine use relapse. The morphine-induced increases in neuroinflammation, brain oxidative stress, and alteration of glutamate levels in the hippocampus and nucleus accumbens have been associated with morphine dependence and a higher severity of withdrawal symptoms. Due to its rich content in potent anti-inflammatory and antioxidant factors, secretome derived from human mesenchymal stem cells (hMSCs) is proposed as a preclinical therapeutic tool for the treatment of this complex neurological condition associated with neuroinflammation and brain oxidative stress. METHODS: Two animal models of morphine dependence were used to evaluate the therapeutic efficacy of hMSC-derived secretome in reducing morphine withdrawal signs. In the first model, rats were implanted subcutaneously with mini-pumps which released morphine at a concentration of 10 mg/kg/day for seven days. Three days after pump implantation, animals were treated with a simultaneous intravenous and intranasal administration of hMSC-derived secretome or vehicle, and withdrawal signs were precipitated on day seven by i.p. naloxone administration. In this model, brain alterations associated with withdrawal were also analyzed before withdrawal precipitation. In the second animal model, rats voluntarily consuming morphine for three weeks were intravenously and intranasally treated with hMSC-derived secretome or vehicle, and withdrawal signs were induced by morphine deprivation. RESULTS: In both animal models secretome administration induced a significant reduction of withdrawal signs, as shown by a reduction in a combined withdrawal score. Secretome administration also promoted a reduction in morphine-induced neuroinflammation in the hippocampus and nucleus accumbens, while no changes were observed in extracellular glutamate levels in the nucleus accumbens. CONCLUSION: Data presented from two animal models of morphine dependence suggest that administration of secretome derived from hMSCs reduces the development of opioid withdrawal signs, which correlates with a reduction in neuroinflammation in the hippocampus and nucleus accumbens.


Assuntos
Células-Tronco Mesenquimais , Dependência de Morfina , Síndrome de Abstinência a Substâncias , Humanos , Ratos , Animais , Morfina , Dependência de Morfina/tratamento farmacológico , Administração Intranasal , Doenças Neuroinflamatórias , Secretoma , Naloxona/farmacologia , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Glutamatos , Antagonistas de Entorpecentes/farmacologia
16.
Antioxidants (Basel) ; 12(9)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37760061

RESUMO

High ethanol consumption triggers neuroinflammation, implicated in sustaining chronic alcohol use. This inflammation boosts glutamate, prompting dopamine release in reward centers, driving prolonged drinking and relapse. Fibrate drugs, activating peroxisome proliferator-activated receptor alpha (PPAR-α), counteract neuroinflammation in other contexts, prompting investigation into their impact on ethanol-induced inflammation. Here, we studied, in UChB drinker rats, whether the administration of fenofibrate in the withdrawal stage after chronic ethanol consumption reduces voluntary intake when alcohol is offered again to the animals (relapse-type drinking). Furthermore, we determined if fenofibrate was able to decrease ethanol-induced neuroinflammation and oxidative stress in the brain. Animals treated with fenofibrate decreased alcohol consumption by 80% during post-abstinence relapse. Furthermore, fenofibrate decreased the expression of the proinflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukins IL-1ß and IL-6, and of an oxidative stress-induced gene (heme oxygenase-1), in the hippocampus, nucleus accumbens, and prefrontal cortex. Animals treated with fenofibrate showed an increase M2-type microglia (with anti-inflammatory proprieties) and a decrease in phagocytic microglia in the hippocampus. A PPAR-α antagonist (GW6471) abrogated the effects of fenofibrate, indicating that they are dependent on PPAR-α activation. These findings highlight the potential of fenofibrate, an FDA-approved dyslipidemia medication, as a supplementary approach to alleviating relapse severity in individuals with alcohol use disorder (AUD) during withdrawal.

17.
Life Sci ; 328: 121876, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37348813

RESUMO

AIMS: Alcohol relapse is a main limitation for the treatment of alcohol use disorders. Previous studies have shown that Alda-1, a pharmacological activator of ALDH2, inhibits both acquisition and chronic ethanol intake in rats; however, its effects on relapse-like ethanol intake are unknown. The aim of this study was to assess the effect of Alda-1 on post-deprivation and reaccess relapse-like ethanol intake in alcohol-preferring UChB rats. We also aimed to assess the possible mechanisms associated with the effects of Alda-1 by measuring the levels of glutamate transporter (GLT-1), oxidative stress and neuroinflammation markers in different regions of the mesocorticolimbic system. MAIN METHODS: In Experiment I, UChB female rats were exposed for 100 days to voluntary ethanol intake followed by 2-weeks of ethanol withdrawal and 1 week of ethanol reaccess. Alda-1 (25 mg/kg, intragastric, i.g) or vehicle was administered daily for 14 days during the withdrawal/re-access period. Experiment II was similar to Experiment I, but after the withdrawal period, ethanol re-access was not allowed, and Alda-1 was administered during the last week of withdrawal. At the end of both experiments, the levels of GLT-1, oxidative stress (GSH, MDA), and neuroinflammation markers (GFAP, Iba-1) were assessed in nucleus accumbens and/or hippocampus. KEY FINDINGS: The results showed that Alda-1 administration markedly blocked (90 %, p < 0.001) relapse-like ethanol intake in UChB rats. Alda-1 increased Iba-1 reactivity (microglial marker) in the NAc of ethanol-deprived rats. Alda-1 administration did not influence the levels of GLT-1, oxidative stress markers (MDA, GSH) or GFAP reactivity in the mesocorticolimbic system. SIGNIFICANCE: These preclinical findings support the use of activators of ALDH2, such as Alda-1, as a potential pharmacological strategy in the treatment of alcohol relapse.


Assuntos
Alcoolismo , Etanol , Ratos , Feminino , Animais , Alcoolismo/tratamento farmacológico , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Doenças Neuroinflamatórias , Aldeído-Desidrogenase Mitocondrial , Doença Crônica , Sistema X-AG de Transporte de Aminoácidos , Recidiva
18.
Clin Ophthalmol ; 17: 1967-1974, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457873

RESUMO

Purpose: To evaluate a novel sutureless glueless technique using a triple-layer dehydrated amniotic membrane (TLDAM) for pterygia excisions in surgical time, postoperative pain, epiphora, irritation, and FBS. Methods: Twenty eyes with pterygia underwent excision with mitomycin C. The conjunctival defect was closed with TLDAM placed on the dried scleral bed with the edges of the amniotic membrane tucked under the edges of the conjunctival defect. Surgical times were measured from injection of lidocaine to final placement of bandage contact lens. After a bandage contact lens was placed, the eye was patched until POD1. Patients graded self-administered questionnaires to rate pain, FBS, irritation, and epiphora on a scale of 1-5 (1-none; 5-severe) at POD1 and POW1. Results: Surgical times ranged from 6:55 to 12:00, with mean of 8:29. Compared with a previous study of sutureless glueless methodology, the difference in mean surgical time was 11.9 (p < 0.0001). Mean questionnaire scores were as follows: POD1 pain 1.8, FBS 2.3, irritation 1.0, and epiphora 2.6; POW1 pain 1.5, FBS 1.6, irritation 1.6, and epiphora 1.6. Compared to previous studies, this technique showed significantly improved pain at POD1 (p=0.0086, p<0.0001, p<0.0001, p<0.0001) and POW1 (p=0.0002, p=0.0016, p<0.0001). Significant improvement in irritation and FBS was noted at POD1 and POW1. See Table 1 for full analysis. Conclusion: The sutureless glueless technique using TLDAM is a safe and effective technique compared to current standard methods. There appears to be a significant benefit regarding surgical time and postoperative pain, irritation, epiphora, and FBS compared to previous studies.

19.
Drug Alcohol Depend ; 236: 109466, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35489181

RESUMO

RATIONALE: Gut microbiota communicates information to the brain. Some animals are born with a gut microbiota that predisposes to high alcohol consumption, and transplantation of fecal material from alcoholics to mice increases animal preference for ethanol. Alcohol-use-disorders are chronic conditions where relapse is the hallmark. A predictive animal model of relapse is the "alcohol deprivation effect" where ethanol re-access is allowed following chronic alcohol intake and a long alcohol deprivation. The present study evaluates the effect of gut microbiota modification on relapse, as an adjunct to N-acetylcysteine + Acetylsalicylic acid administration, which inhibits the alcohol-induced hyper-glutamatergic condition. METHODS: Rats bred as heavy alcohol consumers (UChB) were allowed ethanol intake for one month, were deprived of alcohol for two-weeks and subsequently offered re-access to ethanol. Prior to ethanol re-access animals received orally either (i) vehicle-control, (ii) Lactobacillus-rhamnosus-GG after antibiotic treatment (LGG); (iii) N-acetylcysteine+Acetylsalicylic acid (NAC/ASA) or (iv) both treatments: LGG+ (NAC/ASA). RESULTS: Marked binge drinking (1.75 g ethanol/kg in 60 min) and blood alcohol levels exceeding 80 mg/dl were observed in the control group upon ethanol-re-access. Lactobacillus-GG or (NAC+ASA) treatments inhibited alcohol intake by 66-80%. The combination of both treatments virtually suppressed (inhibition of 90%) the re-access binge-like drinking, showing additive effects. Treatment with NAC+ASA increased the levels of glutamate transporters xCT and GLT-1 in nucleus accumbens, while Lactobacillus-GG administration increased those of the dopamine transporter (DAT). CONCLUSIONS: The administration of a well-accepted probiotic may be of value as an adjunct in the treatment of alcohol-use-disorders.


Assuntos
Transtornos Relacionados ao Uso de Álcool , Alcoolismo , Microbiota , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Consumo de Bebidas Alcoólicas , Alcoolismo/tratamento farmacológico , Animais , Aspirina , Doença Crônica , Etanol , Humanos , Camundongos , Ratos , Recidiva
20.
Transl Psychiatry ; 12(1): 462, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333316

RESUMO

The present study investigates the possible therapeutic effects of human mesenchymal stem cell-derived secretome on morphine dependence and relapse. This was studied in a new model of chronic voluntary morphine intake in Wistar rats which shows classic signs of morphine intoxication and a severe naloxone-induced withdrawal syndrome. A single intranasal-systemic administration of MSCs secretome fully inhibited (>95%; p < 0.001) voluntary morphine intake and reduced the post-deprivation relapse intake by 50% (p < 0.02). Since several studies suggest a significant genetic contribution to the chronic use of many addictive drugs, the effect of MSCs secretome on morphine self-administration was further studied in rats bred as high alcohol consumers (UChB rats). Sub-chronic intraperitoneal administration of morphine before access to increasing concentrations of morphine solutions and water were available to the animals, led UChB rats to prefer ingesting morphine solutions over water, attaining levels of oral morphine intake in the range of those in the Wistar model. Intranasally administered MSCs secretome to UChB rats dose-dependently inhibited morphine self-administration by 72% (p < 0.001); while a single intranasal dose of MSC-secretome administered during a morphine deprivation period imposed on chronic morphine consumer UChB rats inhibited re-access morphine relapse intake by 80 to 85% (p < 0.0001). Both in the Wistar and the UChB rat models, MSCs-secretome administration reversed the morphine-induced increases in brain oxidative stress and neuroinflammation, considered as key engines perpetuating drug relapse. Overall, present preclinical studies suggest that products secreted by human mesenchymal stem cells may be of value in the treatment of opioid addiction.


Assuntos
Células-Tronco Mesenquimais , Transtornos Relacionados ao Uso de Opioides , Síndrome de Abstinência a Substâncias , Humanos , Animais , Ratos , Morfina/farmacologia , Ratos Wistar , Secretoma , Etanol , Recidiva , Doença Crônica , Modelos Animais , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA