Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(19)2020 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-33020374

RESUMO

Epigenetic aberrations have been recognized as important contributors to cancer onset and development, and increasing evidence suggests that linker histone H1 variants may serve as biomarkers useful for patient stratification, as well as play an important role as drivers in cancer. Although traditionally histone H1 levels have been studied using antibody-based methods and RNA expression, these approaches suffer from limitations. Mass spectrometry (MS)-based proteomics represents the ideal tool to accurately quantify relative changes in protein abundance within complex samples. In this study, we used a label-free quantification approach to simultaneously analyze all somatic histone H1 variants in clinical samples and verified its applicability to laser micro-dissected tissue areas containing as low as 1000 cells. We then applied it to breast cancer patient samples, identifying differences in linker histone variants patters in primary triple-negative breast tumors with and without relapse after chemotherapy. This study highlights how label-free quantitation by MS is a valuable option to accurately quantitate histone H1 levels in different types of clinical samples, including very low-abundance patient tissues.


Assuntos
Histonas/genética , Recidiva Local de Neoplasia/genética , Proteômica , Neoplasias de Mama Triplo Negativas/genética , Biomarcadores Tumorais/genética , Epigênese Genética/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Recidiva Local de Neoplasia/diagnóstico , Recidiva Local de Neoplasia/patologia , Processamento de Proteína Pós-Traducional/genética , Espectrometria de Massas em Tandem , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/patologia
2.
PLoS Genet ; 9(4): e1003461, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23637629

RESUMO

Embryonic development is tightly regulated by transcription factors and chromatin-associated proteins. H3K4me3 is associated with active transcription and H3K27me3 with gene repression, while the combination of both keeps genes required for development in a plastic state. Here we show that deletion of the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) results in major neonatal lethality due to respiratory failure. Jarid1b knockout embryos have several neural defects including disorganized cranial nerves, defects in eye development, and increased incidences of exencephaly. Moreover, in line with an overlap of Jarid1b and Polycomb target genes, Jarid1b knockout embryos display homeotic skeletal transformations typical for Polycomb mutants, supporting a functional interplay between Polycomb proteins and Jarid1b. To understand how Jarid1b regulates mouse development, we performed a genome-wide analysis of histone modifications, which demonstrated that normally inactive genes encoding developmental regulators acquire aberrant H3K4me3 during early embryogenesis in Jarid1b knockout embryos. H3K4me3 accumulates as embryonic development proceeds, leading to increased expression of neural master regulators like Pax6 and Otx2 in Jarid1b knockout brains. Taken together, these results suggest that Jarid1b regulates mouse development by protecting developmental genes from inappropriate acquisition of active histone modifications.


Assuntos
Histona Desmetilases com o Domínio Jumonji , Proteínas Repressoras , Animais , Desenvolvimento Embrionário , Genes Controladores do Desenvolvimento , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Camundongos , Proteínas Nucleares/genética , Proteínas do Grupo Polycomb/genética , Proteínas Repressoras/genética
3.
Nat Cell Biol ; 23(4): 401-412, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33837287

RESUMO

Rewiring of cellular programmes in malignant cells generates cancer-specific vulnerabilities. Here, using an unbiased screening strategy aimed at identifying non-essential genes required by tumour cells to sustain unlimited proliferative capacity, we identify the male-specific lethal (MSL) acetyltransferase complex as a vulnerability of genetically unstable cancers. We find that disruption of the MSL complex and consequent loss of the associated H4K16ac mark do not substantially alter transcriptional programmes but compromise chromosome integrity and promote chromosomal instability (CIN) that progressively exhausts the proliferative potential of cancer cells through a p53-independent mechanism. This effect is dependent on pre-existing genomic instability, and normal cells are insensitive to MSL disruption. Using cell- and patient-derived xenografts from multiple cancer types, we show that excessive CIN induced by MSL disruption inhibits tumour maintenance. Our findings suggest that targeting MSL may be a valuable means to increase CIN beyond the level tolerated by cancer cells without inducing severe adverse effects in normal tissues.


Assuntos
Proliferação de Células/genética , Instabilidade Cromossômica/genética , Complexos Multiproteicos/genética , Neoplasias/genética , Animais , Linhagem Celular Tumoral , Reprogramação Celular/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Xenoenxertos , Histona Acetiltransferases/genética , Humanos , Camundongos , Neoplasias/patologia , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/genética
4.
Oncogene ; 40(16): 2923-2935, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33742126

RESUMO

The survival rate in lung cancer remains stubbornly low and there is an urgent need for the identification of new therapeutic targets. In the last decade, several members of the SWI/SNF chromatin remodeling complexes have been described altered in different tumor types. Nevertheless, the precise mechanisms of their impact on cancer progression, as well as the application of this knowledge to cancer patient management are largely unknown. In this study, we performed targeted sequencing of a cohort of lung cancer patients on genes involved in chromatin structure. In addition, we studied at the protein level the expression of these genes in cancer samples and performed functional experiments to identify the molecular mechanisms linking alterations of chromatin remodeling genes and tumor development. Remarkably, we found that 20% of lung cancer patients show ARID2 protein loss, partially explained by the presence of ARID2 mutations. In addition, we showed that ARID2 deficiency provokes profound chromatin structural changes altering cell transcriptional programs, which bolsters the proliferative and metastatic potential of the cells both in vitro and in vivo. Moreover, we demonstrated that ARID2 deficiency impairs DNA repair, enhancing the sensitivity of the cells to DNA-damaging agents. Our findings support that ARID2 is a bona fide tumor suppressor gene in lung cancer that may be exploited therapeutically.


Assuntos
Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Fatores de Transcrição/deficiência , Células A549 , Animais , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Taxa de Sobrevida , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Nat Commun ; 11(1): 1792, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286289

RESUMO

Continuous cancer growth is driven by subsets of self-renewing malignant cells. Targeting of uncontrolled self-renewal through inhibition of stem cell-related signaling pathways has proven challenging. Here, we show that cancer cells can be selectively deprived of self-renewal ability by interfering with their epigenetic state. Re-expression of histone H1.0, a tumor-suppressive factor that inhibits cancer cell self-renewal in many cancer types, can be broadly induced by the clinically well-tolerated compound Quisinostat. Through H1.0, Quisinostat inhibits cancer cell self-renewal and halts tumor maintenance without affecting normal stem cell function. Quisinostat also hinders expansion of cells surviving targeted therapy, independently of the cancer types and the resistance mechanism, and inhibits disease relapse in mouse models of lung cancer. Our results identify H1.0 as a major mediator of Quisinostat's antitumor effect and suggest that sequential administration of targeted therapy and Quisinostat may be a broadly applicable strategy to induce a prolonged response in patients.


Assuntos
Autorrenovação Celular , Histonas/metabolismo , Ácidos Hidroxâmicos/farmacologia , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Autorrenovação Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Humanos , Camundongos , Neoplasias/genética , Recidiva
6.
PLoS One ; 8(4): e60020, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23573229

RESUMO

Embryonic development requires chromatin remodeling for dynamic regulation of gene expression patterns to ensure silencing of pluripotent transcription factors and activation of developmental regulators. Demethylation of H3K27me3 by the histone demethylases Utx and Jmjd3 is important for the activation of lineage choice genes in response to developmental signals. To further understand the function of Utx in pluripotency and differentiation we generated Utx knockout embryonic stem cells (ESCs). Here we show that Utx is not required for the proliferation of ESCs, however, Utx contributes to the establishment of ectoderm and mesoderm in vitro. Interestingly, this contribution is independent of the catalytic activity of Utx. Furthermore, we provide data showing that the Utx homologue, Uty, which is devoid of detectable demethylase activity, and Jmjd3 partly compensate for the loss of Utx. Taken together our results show that Utx is required for proper formation of ectoderm and mesoderm in vitro, and that Utx, similar to its C.elegans homologue, has demethylase dependent and independent functions.


Assuntos
Diferenciação Celular , Ectoderma/citologia , Células-Tronco Embrionárias/fisiologia , Histona Desmetilases/metabolismo , Mesoderma/citologia , Animais , Proliferação de Células , Células Cultivadas , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Antígenos de Histocompatibilidade Menor , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas/genética , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA