RESUMO
Oligodendrocyte precursor markers have become of great interest to identify new diagnostic and therapeutic targets for diffuse gliomas, since state-of-the-art studies point towards immature oligodendrocytes as a possible source of gliomagenesis. Brain enriched myelin associated protein 1 (BCAS1) is a novel marker of immature oligodendrocytes and was proposed to contribute to tumorigenesis in non-central nervous system tumors. However, BCAS1 role in diffuse glioma is still underexplored. This study analyzes the expression of BCAS1 in different tumor samples from patients with diffuse gliomas (17 oligodendrogliomas; 8 astrocytomas; 60 glioblastomas) and uncovers the molecular and ultrastructural features of BCAS1+ cells by immunostaining and electron microscopy. Our results show that BCAS1+ cells exhibit stellate or spherical morphology with similar ultrastructural features. Stellate and spherical cells were detected as isolated cells in all studied gliomas. Nevertheless, only stellate cells were found to be proliferative and formed tightly packed nodules with a highly proliferative rate in oligodendrogliomas. Our findings provide a comprehensive characterization of the BCAS1+ cell population within diffuse gliomas. The observed proliferative capacity and distribution of BCAS1+ stellate cells, particularly in oligodendrogliomas, highlight BCAS1 as an interesting marker, warranting further investigation into its role in tumor malignancy.
Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Glioma , Oligodendroglioma , Humanos , Oligodendroglioma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioma/patologia , Astrocitoma/patologia , Glioblastoma/patologia , Proteínas de NeoplasiasRESUMO
Oligodendrocytes are the myelinating cells of the central nervous system. They provide trophic, metabolic, and structural support to neurons. In several pathologies such as multiple sclerosis (MS), these cells are severely affected and fail to remyelinate, thereby leading to neuronal death. The gold standard for studying remyelination is the g-ratio, which is measured by means of transmission electron microscopy (TEM). Therefore, studying the fine structure of the oligodendrocyte population in the human brain at different stages through TEM is a key feature in this field of study. Here we study the ultrastructure of oligodendrocytes, its progenitors, and myelin in 10 samples of human white matter using nine different markers of the oligodendrocyte lineage (NG2, PDGFRα, A2B5, Sox10, Olig2, BCAS1, APC-(CC1), MAG, and MBP). Our findings show that human oligodendrocytes constitute a very heterogeneous population within the human white matter and that its stages of differentiation present characteristic features that can be used to identify them by TEM. This study sheds light on how these cells interact with other cells within the human brain and clarify their fine characteristics from other glial cell types.