Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Reproduction ; 165(2): 147-157, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36342662

RESUMO

In brief: In the proestrus day, the neural and endocrine signals modulate ovarian function. This study shows vagus nerve plays a role in the multisynaptic pathways of communication between the suprachiasmatic nucleus and the ovaries where such neural information determines ovulation. Abstract: The suprachiasmatic nucleus (SCN) regulates the activity of several peripheral organs through a parasympathetic-sympathetic pathway. Previously, we demonstrated that atropine (ATR) microinjection in the right SCN of rats during proestrus blocks ovulation. In the present study, we analysed whether the vagus nerve is one of the neural pathways by which the SCN regulates ovulation. For this, CIIZ-V strain cyclic rats on the day of proestrus were microinjected with a saline solution (vehicle) or ATR in the right or left SCN, which was followed by ventral laparotomy or ipsilateral vagotomy to the microinjection side. Some animal groups were sacrificed (i) on the same day of the surgery to measure oestradiol, progesterone and luteinizing hormone (LH) levels or (ii) at 24 h after surgery to evaluate ovulation. The left vagotomy in rats microinjected with ATR in the left SCN did not modify ovulation. In rats with ATR microinjection in the right SCN, the right vagotomy increased the levels of steroids and LH on the proestrus and ovulatory response. The present results suggest that the right vagus nerve plays a role in the multisynaptic pathways of communication between the SCN and the ovaries and indicate that such neural information participates in the regulation of the oestradiol and progesterone surge, which triggers the preovulatory peak of LH and determines ovulation.


Assuntos
Hormônio Luteinizante , Progesterona , Feminino , Ratos , Animais , Progesterona/metabolismo , Hormônio Luteinizante/metabolismo , Núcleo Supraquiasmático/metabolismo , Ovulação/fisiologia , Estradiol/metabolismo , Atropina/farmacologia , Atropina/metabolismo , Nervo Vago/metabolismo
2.
Gen Comp Endocrinol ; 300: 113636, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33017581

RESUMO

Hyperactivity in the sympathetic nervous system has been shown to be related to the development of ovarian pathologies. In addition, obesity has been found to be associated with multiple reproductive anomalies and is considered a chronic stress condition of low intensity with changes in the peripheral sympathetic activity. Therefore, in the present study, we aimed to evaluate if the information reaching the ovaries through the superior ovarian nerve (SON) modifies the ovarian function of Zucker fatty rats. We performed a unilateral section of the SON at 32 days of age and autopsies were carried out on the day of the first vaginal estrus. The results showed that fatty animals do not ovulate on the day of the first vaginal estrus and exhibit an increase in catecholaminergic fibers and the presence of precystic structures in the ovaries, without changes in the onset of puberty or in the secretion of ovarian and hypophyseal hormones. We also found that the section of the right SON resulted in ovulation on the day of the first vaginal estrus, which was accompanied by a decrease in ovarian noradrenaline content. The section of the left SON caused a delay in puberty without changes in the rest of the parameters. These results provide functional evidence that the peripheral sympathetic innervation participates in the regulation of ovarian functions in an animal model of genetic obesity.


Assuntos
Tecido Nervoso/fisiologia , Ovário/inervação , Ovulação/fisiologia , Animais , Catecolaminas/metabolismo , Feminino , Ovário/anatomia & histologia , Ratos Zucker , Maturidade Sexual/fisiologia
3.
Molecules ; 26(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34576975

RESUMO

In rats with polycystic ovary syndrome (PCOS) induced by injection of estradiol valerate (EV), unilateral or bilateral section of the vagus nerve restores ovulatory function in 75% of animals, suggesting that the vagus nerve participates in the development of PCOS. Since the vagus nerve is a mixed nerve through which mainly cholinergic-type information passes, the objective of the present study was to analyze whether acetylcholine (ACh) is involved in the development of PCOS. Ten-day-old rats were injected with 2.0 mg EV, and at 60 days of age, they were microinjected on the day of diestrus in the bursa of the left or right ovary with 100 or 700 mg/kg of ovarian weight atropine, a blocker of muscarinic receptors, and sacrificed for histopathological examination after the surgery. Animals with PCOS microinjected with 100 mg of atropine showed a lack of ovulation, lower serum concentrations of progesterone and testosterone, and cysts. Histology of the ovaries of animals microinjected with 700 mg of atropine showed corpus luteum and follicles at different stages of development, which was accompanied by a lower concentration of progesterone and testosterone. These results allow us to suggest that in animals with PCOS, ACh, which passes through parasympathetic innervation, is an important component in the persistence and development of the pathophysiology.


Assuntos
Síndrome do Ovário Policístico , Progesterona , Animais , Atropina/farmacologia , Estradiol , Feminino , Ovulação/efeitos dos fármacos , Ratos
4.
J Assist Reprod Genet ; 37(6): 1477-1488, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32363564

RESUMO

PURPOSE: Little is known about the role of the superior ovarian nerve (SON) in follicular development during the estrus cycle. The aim of the present study was to analyze the role of neural signals arriving through the SON at the ovaries in the regulation of follicular development and ovarian steroid secretion in diestrus 1 of cyclic rats. METHODS: Cyclic rats were subjected to left, right, or bilateral SON sectioning or to unilateral or bilateral laparotomy at diestrus 1 at 11:00 h. Animals were sacrificed 24 h after surgery. RESULTS: Compared to laparotomized animals, unilateral SON sectioning decreased the number of preovulatory follicles, while bilateral SON sectioning resulted in a decreased number of atretic preantral follicles. An important observation was the presence of invaginations in the follicular wall of large antral and preovulatory follicles in animals with denervation. Furthermore, left SON sectioning increased progesterone levels but decreased testosterone levels, which are effects that were not observed in animals that were subjected to right denervation. CONCLUSIONS: At 11:00 h of diestrus 1, the SON was found to stimulate follicle development, possibly via neural signals, such as noradrenaline and/or vasoactive intestinal peptide, and this stimulation induced the formation of follicle-stimulating hormone receptors. The role of the SON in the regulation of ovarian steroid secretion is asymmetric: the left SON inhibits the regulation of progesterone and stimulates testosterone secretion, and the right nerve does not participate in these processes.


Assuntos
Diestro/fisiologia , Estro/fisiologia , Folículo Ovariano/fisiologia , Ovário/inervação , Animais , Modelos Animais de Doenças , Feminino , Hormônio Foliculoestimulante/farmacologia , Humanos , Laparotomia , Hormônio Luteinizante/farmacologia , Tecido Nervoso/patologia , Tecido Nervoso/cirurgia , Folículo Ovariano/inervação , Folículo Ovariano/cirurgia , Ovário/fisiologia , Ovário/cirurgia , Ovulação/fisiologia , Ratos , Testosterona/farmacologia
5.
Reprod Biol Endocrinol ; 17(1): 95, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31744506

RESUMO

BACKGROUND: Polycystic ovary syndrome is characterized by hyperactivity of the ovarian sympathetic nervous system, increases in the content and release of norepinephrine, as well as decreases in the number of ß-adrenoreceptors. In the present study, ß-adrenoreceptors in the ovaries of rats with polycystic ovary syndrome were blocked and analyzed the resultant effects on ovulation, hormone secretion and the enzymes responsible for the synthesis of catecholamines. METHODS: At 60 days of age, vehicle or estradiol valerate-treated rats were injected with propranolol [10- 4 M] into the ovarian bursas on oestrus day. The animals were sacrificed on the next day of oestrus, and the ovulation response, the steroid hormone levels in the serum and the immunoreactivity of tyrosine hydroxylase and dopamine ß-hydroxylase in the ovaries were measured. RESULTS: In animals with the induction of polycystic ovary syndrome and ß-adrenoreceptor blocking, ovulation was restored in more than half of the animals and resulted in decreased hyperandrogenism with respect to the levels observed in the estradiol valerate-treated group. Tyrosine hydroxylase and dopamine ß-hydroxylase were present in the theca cells of the growing follicles and the interstitial gland. Injection of propranolol restored the tyrosine hydroxylase and ovarian dopamine ß-hydroxylase levels in rats with polycystic ovary syndrome induction. CONCLUSIONS: The results suggest that a single injection into the ovarian bursas of propranolol, a nonselective antagonist of ß-adrenoreceptor receptors, decreases the serum testosterone concentration and the formation of ovarian cysts, improving the ovulation rate that accompanies lower levels of tyrosine hydroxylase and dopamine ß-hydroxylase in the ovary.


Assuntos
Ovulação/efeitos dos fármacos , Síndrome do Ovário Policístico/metabolismo , Propranolol/farmacologia , Receptores Adrenérgicos beta/metabolismo , Antagonistas Adrenérgicos beta/farmacologia , Animais , Estradiol , Estro/efeitos dos fármacos , Estro/fisiologia , Feminino , Humanos , Ovário/efeitos dos fármacos , Ovário/metabolismo , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/fisiopatologia , Ratos , Testosterona/sangue , Tirosina 3-Mono-Oxigenase/metabolismo
6.
Exp Physiol ; 104(8): 1179-1189, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31241201

RESUMO

NEW FINDINGS: What is the central question of this study? What is the role of the nicotinic system of the suprachiasmatic nucleus (SCN) in the regulation of follicular growth and ovulation? What is the main finding and its importance? The stimulation of the nicotinic system of the pro-oestrus rat SCN results in an increase in the number of ova shed, in the number of growing ovarian follicles and in the secretion of oestradiol. ABSTRACT: The timing of the preovulatory luteinizing hormone surge that leads to ovulation depends to a large extent on a functional circadian clock that is localized in the suprachiasmatic nucleus (SCN). The activities of the SCN are regulated by several neurotransmitter systems, including the muscarinic system. Given that acetylcholine binds to muscarinic (mAChRs) and nicotinic (nAChRs) receptors, in the present study, we analysed the effects of unilaterally stimulating nAChRs in the left or right SCN. Stimulation treatment was administered in rats in pro-oestrus at 09.00 or 19.00 h by injecting 0.3 µl of a nicotine solution (200 µm). The effects of the stimulation were assessed by evaluating the number of ova shed, the number of ovarian follicles, and the levels of oestradiol and progesterone in serum 24 h after treatment. We observed that regardless of the time (4 h after lights on, 09.00 h, or immediately after lights off, 19.00 h) or the side of the SCN treated, the unilateral microinjection of nicotine resulted in a higher number of ova shed and higher number of growing follicles in the ovaries as well as higher oestradiol serum levels. When the nicotine microinjection treatment failed to reach the SCN, the oestradiol levels in serum were similar to those of animals treated with vehicle solution. Based on the current results, we suggest that during pro-oestrus, the nicotinic neuronal information in the SCN modulates follicular growth and ovulation in a stimulatory manner.


Assuntos
Folículo Ovariano/metabolismo , Ovário/metabolismo , Receptores Nicotínicos/metabolismo , Núcleo Supraquiasmático/metabolismo , Animais , Estradiol/metabolismo , Estro/metabolismo , Feminino , Hormônio Foliculoestimulante/metabolismo , Hormônio Luteinizante/metabolismo , Ovulação/metabolismo , Proestro/metabolismo , Progesterona/metabolismo , Ratos
7.
Reprod Biol Endocrinol ; 16(1): 86, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30193590

RESUMO

BACKGROUND: The injection of estradiol valerate in female rats induces polycystic ovary syndrome, which is characterized by polycystic ovaries, anovulation, and hyperandrogenism. These characteristics have been associated with an increase in the ovarian concentration of norepinephrine, which occurs before establishing the polycystic ovary syndrome. The bilateral section of the superior ovarian nerve restores ovarian functions in animals with polycystic ovary syndrome. The superior ovarian nerve provides norepinephrine and vasoactive intestinal peptide to the ovary. An increase in the activity of both neurotransmitters has been associated with the development of polycystic ovary syndrome. The purpose of the present study was analyzed the participation of the noradrenergic nervous system in the development of polycystic ovary syndrome using guanethidine as a pharmacological tool that destroys peripheral noradrenergic nerve fibers. METHODS: Fourteen-day old female rats of the CIIZ-V strain were injected with estradiol valerate or vehicle solution. Rats were randomly allotted to one of three guanethidine treatment groups for denervation: 1) guanethidine treatment at age 7 to 27-days, 2) guanethidine treatment at age 14 to 34- days, and 3) guanethidine treatment at age 70 to 90- days. All animals were sacrificed when presenting vaginal oestrus at age 90 to 94-days. The parameters analyzed were the number of ova shed by ovulating animals, the ovulation rate (i.e., the numbers of ovulating animals/the numbers of used animals), the serum concentration of progesterone, testosterone, oestradiol and the immunoreactivity for tyrosine hydroxylase enzyme. All data were analyzed statistically. A p-value of less than 0.05 was considered significant. RESULTS: Our results show that the elimination of noradrenergic fibers before the establishment of polycystic ovary syndrome prevents two characteristics of the syndrome, blocking of ovulation and hyperandrogenism. We also found that in animals that have already developed polycystic ovary syndrome, sympathetic denervation restores ovulatory capacity, but it was not as efficient in reducing hyperandrogenism. CONCLUSION: The results of the present study suggest that the noradrenergic fibers play a stimulant role in the establishment of polycystic ovary syndrome.


Assuntos
Guanetidina/uso terapêutico , Síndrome do Ovário Policístico/patologia , Neurônios Adrenérgicos/efeitos dos fármacos , Animais , Estradiol/análogos & derivados , Feminino , Ovário/efeitos dos fármacos , Ovário/inervação , Distribuição Aleatória , Ratos Endogâmicos , Simpatectomia Química , Fatores de Tempo
8.
Reprod Biol Endocrinol ; 14(1): 34, 2016 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-27306649

RESUMO

BACKGROUND: The suprachiasmatic nucleus (SCN) and the cholinergic system of various regions of the hypothalamus participate in the regulation of gonadotropin-releasing hormone (GnRH) and gonadotropin secretion, which are necessary for the occurrence of ovulation. In the present study, our goal was to analyse the effects of unilaterally blocking the muscarinic receptors in the SCN on ovulation and steroid secretion. METHODS: Cyclic rats were randomly allotted to one of the experimental groups. Groups of 8-14 rats were anaesthetized and microinjected with 0.3 µl of saline or a solution of atropine (62.5 ng in 0.3 µl of saline) into the left or right SCN at 09.00 or 19.00 h during diestrus-1 or on the proestrus day. The rats were euthanized on the predicted day of oestrus, and evaluated ovulation and levels of progesterone and oestradiol. Other groups of 10 rats were microinjected with atropine into the left or right SCNs at 09.00 h on the proestrus day, were euthanized eight h later, and luteinizing hormone (LH) was measured. RESULTS: At 09.00 or 19.00 h during diestrus-1, atropine microinjections into the SCNs on either side did not modify ovulation. The atropine microinjections performed at 09.00 h of proestrus into either side of the SCN blocked ovulation (right SCN: 1/9 ovulated vs. 9/10 in the saline group; left SCN: 8/14 ovulated vs. 10/10 in the saline group). The LH levels at 17.00 h in the rats that were microinjected with atropine at 09.00 h of proestrus were lower than those of the controls. In the non-ovulating atropine-treated rats, the injection of synthetic LH-releasing hormone (LHRH) restored ovulation. Atropine treatment at 19.00 h of proestrus on either side of the SCN did not modify ovulation, while the progesterone and oestradiol levels were lower. CONCLUSION: Based on the present results, we suggest that the cholinergic neural information arriving on either side of the SCN is necessary for the pre-ovulatory secretion of LH to induce ovulation. Additionally, the regulation of progesterone and oestradiol secretion by the cholinergic innervation of the SCN varies with the time of day, the day of the cycle, and the affected SCN.


Assuntos
Atropina/farmacologia , Hormônio Luteinizante/sangue , Antagonistas Muscarínicos/farmacologia , Ovulação/efeitos dos fármacos , Proestro/efeitos dos fármacos , Núcleo Supraquiasmático/efeitos dos fármacos , Animais , Feminino , Ovário/efeitos dos fármacos , Proestro/metabolismo , Ratos , Núcleo Supraquiasmático/metabolismo
9.
Reprod Biol Endocrinol ; 13: 61, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26082163

RESUMO

BACKGROUND: The present study investigates sectioning the superior ovarian nerve (SON) in rats with functional sensorial denervation induced by capsaicin administration at birth and the effects on the establishment of puberty, ovulation, serum progesterone, and estradiol concentrations. METHODS: The animals were allotted randomly to one of the following experimental groups. Groups of 8-10 rats were injected at birth with capsaicin or vehicle, and on day 20 or 28 of life, they were submitted to a sham operation (SO). Other groups of 8-10 rats were injected at birth with capsaicin or vehicle, and on day 20 or 28 of life, they were submitted to the uni-or bilateral SON sectioning. The animals were killed at the first estrus. Serum concentration of progesterone (ng/ml) and estradiol (pg/ml) were measured using a radioimmunoassay. RESULTS: Animals treated with capsaicin and subjected at 20 days of life to the left or bilateral section of SON had a delayed age of vaginal opening. Furthermore, animals with a lack of sensory information and subjected to a SO at 28 days of life had the same delay in the age of vaginal opening. Animals with sensorial innervation intact, subjected to unilateral section of the SON at 20 or 28 days of age, showed diminished ovulation rate and number of ova shed by the denervated ovary. In animals with sensorial denervation, the uni-or bilateral sectioning of the SON did not result in changes in ovulation. Progesterone and estradiol levels were different depending on the age of the animal in which the SON section was performed. CONCLUSIONS: Based on the present results, we suggest that sympathetic innervation regulates ovulation and the secretion of steroid hormones and that the sensory fibers modulate the sympathetic innervation action on ovarian functions.


Assuntos
Ovário/inervação , Ovário/fisiologia , Células Receptoras Sensoriais/fisiologia , Maturidade Sexual/fisiologia , Sistema Nervoso Simpático/fisiologia , Animais , Capsaicina/farmacologia , Denervação/métodos , Estradiol/sangue , Feminino , Ovário/efeitos dos fármacos , Progesterona/sangue , Ratos , Células Receptoras Sensoriais/efeitos dos fármacos , Maturidade Sexual/efeitos dos fármacos , Sistema Nervoso Simpático/efeitos dos fármacos
10.
J Neuroendocrinol ; : e13421, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38826071

RESUMO

Reproduction in all mammalian species depends on the growth and maturation of ovarian follicles, that is, folliculogenesis. Follicular development can culminate with the rupture of mature follicles and the consequent expulsion of their oocytes (ovulation) or in atresia, characterized by the arrest of development and eventual degeneration. These processes are regulated by different neuroendocrine signals arising at different hypothalamic nuclei, including the suprachiasmatic nucleus (SCN). In the later, the activation of muscarinic receptors (mAChRs) and nicotinic receptors (nAChRs) by acetylcholine is essential for the regulation of the pre-ovulatory signals that stimulate the rupture of mature follicles. To evaluate the participation of the nAChRs in the SCN throughout the oestrous cycle in the regulation of the hypothalamic-pituitary-ovarian axis. For this purpose, 90-day-old adult female rats in metoestrus, dioestrus, proestrus or oestrus were microinjected into the left- or right-SCN with 0.3 µL of saline solution as vehicle or with 0.225 µg of mecamylamine (Mec), a non-selective antagonist of the nicotinic receptors, diluted in 0.3 µL of vehicle. The animals were sacrificed when they presented vaginal cornification, indicative of oestrus stage, and the effects of the unilateral pharmacological blockade of the nAChRs in the SCN on follicular development, ovulation and secretion of oestradiol and follicle-stimulating hormone (FSH) were evaluated. The microinjection of Mec decreased the serum levels of FSH, which resulted in a lower number of growing and healthy follicles and an increase in atresia. The higher percentage of atresia in pre-ovulatory follicles was related to a decrease in the number of ova shed and abnormalities in oestradiol secretion. We also detected asymmetric responses between the left and right treatments that depended on the stage of the oestrous cycle. The present results allow us to suggest that during all the stages of the oestrous cycle, cholinergic signals that act on the nAChRs in the SCN are pivotal to modulate the secretion of gonadotropins and hence the physiology of the ovaries. Further research is needed to determine if such signals are generated by the cholinergic neurons in the SCN or by cholinergic afferents to the SCN.

11.
Reprod Biol Endocrinol ; 11: 68, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23866168

RESUMO

BACKGROUND: Injecting estradiol valerate (EV) to pre-pubertal or adult female rat results in effects similar to those observed in women with polycystic ovarian syndrome (PCOS). One of the mechanisms involved in PCOS development is the hyperactivity of the sympathetic nervous system. In EV-induced PCOS rats, the unilateral sectioning of the superior ovarian nerve (SON) restores ovulation of the innervated ovary. This suggests that, in addition to the sympathetic innervation, other neural mechanisms are involved in the development/maintenance of PCOS. The aims of present study were analyze if the vagus nerve is one of the neural pathways participating in PCOS development. METHODS: Ten-day old rats were injected with EV dissolved in corn oil. At 24-days of age sham-surgery, unilateral, or bilateral sectioning of the vagus nerve (vagotomy) was performed on these rats. The animals were sacrificed at 90-92 days of age, when they presented vaginal estrous preceded by a pro-estrus smear. RESULTS: In EV-induced PCOS rats, unilateral or bilateral vagotomy restored ovulation in both ovaries. Follicle-stimulating hormone (FSH) levels in PCOS rats with unilateral or bilateral vagotomy were lower than in control rats. CONCLUSIONS: This result suggests that in EV-induced PCOS rats the vagus nerve is a neural pathway participating in maintaining PCOS. The vagus nerve innervates the ovaries directly and indirectly through its synapsis in the celiac-superior-mesenteric ganglion, where the somas of neurons originating in the SON are located. Then, it is possible that vagotomy effects in EV-induced PCOS rats may be explained as a lack of communication between the central nervous system and the ovaries.


Assuntos
Ovário/fisiopatologia , Ovulação/fisiologia , Síndrome do Ovário Policístico/fisiopatologia , Vagotomia , Animais , Ciclo Estral/fisiologia , Feminino , Hormônios Esteroides Gonadais/biossíntese , Gonadotropinas/biossíntese , Vias Neurais/fisiologia , Ovário/patologia , Síndrome do Ovário Policístico/patologia , Ratos , Esteroides/biossíntese , Nervo Vago/fisiologia
12.
Reprod Biol ; 23(2): 100756, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36924552

RESUMO

Ovarian functions are modulated by the hypothalamus-pituitary-ovary axis and neural signals. Stress modifies the activity of the sympathetic nervous system. In adult female rats, cold stress results in higher noradrenergic and steroidogenic activity of the ovary, anovulation and the presence of ovarian cysts; however, it is unknown whether this response occurs in prepubertal rats. The purpose of this study was to analyse the effects of cold stress initiated in the prepubertal stage of female rats on ovarian function. Female rats 24 days old were exposed to three, five or eight weeks of cold stress. Autopsies were performed at the end of each stress period. The parameters analysed were the number of ova shed by ovulating animals; the number of ovulating animals; the serum concentrations of progesterone, testosterone, and oestradiol; and the ovarian concentrations of norepinephrine and 3-methoxy-4-hydroxyphenyl-glycol. Our results show that chronic cold stress applied to prepubertal rats did not modify the number of ovulating animals, the total number of ova shed, or progesterone and testosterone concentrations in any of the periods analysed. Oestradiol concentration was lower in the animals exposed to five or eight weeks of stress. The ovarian norepinephrine concentration was higher in the animals exposed to three weeks of stress and was lower at eight weeks of stress. No changes in ovarian morphology were observed. Our data suggest that the changes in noradrenergic activity resulting from chronic cold stress experienced in the prepubertal stage do not modify ovarian architecture or affect the ovulatory response in adulthood.


Assuntos
Resposta ao Choque Frio , Progesterona , Ratos , Animais , Feminino , Estradiol , Norepinefrina/fisiologia , Testosterona
13.
Anim Reprod ; 20(3): e20220102, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026000

RESUMO

Presently, demyelinating diseases have been reported to affect the reproductive life of patients who suffer from them, but the progression of the alterations is unknown, especially in men. To better understand these effects, it is necessary to perform studies in animal models, such as the male taiep rat, which exhibits progressive demyelination of the central nervous system, altered kisspeptin expression at the hypothalamic level, and decreased luteinizing hormone, which could alter sperm quality and testicular diameter. Thus, the objective of the present study was to analyze the diameter of the seminiferous tubules, the sperm motility, and the testosterone levels of 90-day-old male taiep rats. The obtained results indicate that male taiep rats show an increase in testicular size accompanied by an increase in the diameter of the seminiferous tubules of the left testicle. There was also a decrease in progressive motility in sperm samples from the left epididymis of male taiep rats compared to the control group, with no changes in serum testosterone concentration. Therefore, we conclude that male taiep rats with central demyelination show altered testicular diameter and decreased motility in sperm from the left side. This type of studies serves as a basis for proposing possible reproductive strategies to improve the fertility and testicular function of men with demyelinating diseases of the central nervous system.

15.
Reprod Biol Endocrinol ; 10: 88, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23110668

RESUMO

In the adult rat, neural signals arriving to the ovary via the superior ovarian nerve (SON) modulate progesterone (P4), testosterone (T) and estradiol (E2) secretion. The aims of the present study were to analyze if the SON in the pre-pubertal rat also modulates ovarian hormone secretion and the release of follicle stimulating hormone (FSH) and luteinizing (LH) hormone. P4, T, E2, FSH and LH serum levels were measured 30 or 60 minutes after sectioning the SON of pre-pubertal female rats. Our results indicate that the effects on hormone levels resulting from unilaterally or bilaterally sectioning the SON depends on the analyzed hormone, and the time lapse between surgery and autopsy, and that the treatment yielded asymmetric results. The results also suggest that in the pre-pubertal rat the neural signals arriving to the ovaries via the SON regulate the enzymes participating in P4, T and E2 synthesis in a non-parallel way, indicating that the mechanisms regulating the synthesis of each hormone are not regulated by the same signals. Also, that the changes in the steroids hormones are not explained exclusively by the modifications in gonadotropins secretion. The observed differences in hormone levels between rats sacrificed 30 and 60 min after surgery reflect the onset of the compensatory systems regulating hormones secretion.


Assuntos
Estradiol/metabolismo , Ovário/inervação , Progesterona/metabolismo , Testosterona/metabolismo , Animais , Estradiol/sangue , Feminino , Hormônio Foliculoestimulante/sangue , Hormônio Foliculoestimulante/metabolismo , Hormônio Luteinizante/sangue , Hormônio Luteinizante/metabolismo , Ovário/metabolismo , Ovulação/fisiologia , Progesterona/sangue , Ratos , Testosterona/sangue
16.
J Chem Neuroanat ; 123: 102120, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35718292

RESUMO

Demyelinating diseases, such as multiple sclerosis, decrease the quality of life of patients and can affect reproduction. Assisted reproductive therapies are available, which although effective, aggravate motor symptoms. For this reason, it is important to determine how the control of the hypothalamus-pituitary-gonadal axis is affected in order to develop better strategies for these patients. One way to determine this is using animal models such as the taiep rat, which shows progressive demyelination of the central nervous system, and was used in the present study to characterize the expression of gonadotrophin-releasing hormone (GnRH), Kisspeptin, and kisspeptin receptor (Kiss1R) and luteinizing hormone (LH) secretion. The expression of kisspeptin, GnRH, and Kiss1R was determined at the hypothalamic level by immunofluorescence and serum LH levels were determined by ELISA. The expression of kisspeptin at the hypothalamic level showed sexual dimorphism, where there was an increase in males and a decrease in females during oestrus. There was no change in the expression of GnRH or kisspeptin receptor, regardless of sex. However, a decrease in serum LH concentration was observed in both sexes. The taiep rat showed changes in the expression of kisspeptin at the hypothalamic level. These changes are different from those reported in the literature with the use of animals with experimental allergic encephalomyelitis, this is because both animal models represent different degrees of progression of multiple sclerosis. Our results suggest that the effects on the hypothalamus-pituitary-gonadal axis depend on the differences between the demyelinating processes, their progression, and even individual factors, and it is thus important that fertility treatments are individualized to maximize therapeutic effects.


Assuntos
Doenças Desmielinizantes , Hormônio Liberador de Gonadotropina , Kisspeptinas , Esclerose Múltipla , Receptores de Kisspeptina-1 , Animais , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Feminino , Hormônio Liberador de Gonadotropina/biossíntese , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/biossíntese , Hormônio Luteinizante/sangue , Masculino , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Qualidade de Vida , Ratos , Receptores de Kisspeptina-1/biossíntese
17.
J Mol Histol ; 53(2): 347-356, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35217964

RESUMO

Ovarian functions decrease with perimenopause. The ovary has extrinsic innervation, but the neural influence on ovarian functions and dysfunction is not well-studied. The present study aimed to biochemically and morphometrically characterize the intrinsic neurons in ovaries from young adult, middle-aged, and senescent Long Evans CII-ZV rats (3, 12, and 15 months old, respectively). Ovaries were extracted from four rats of each age group (n = 12 total), cryopreserved, and processed for immunofluorescence studies with the primary NeuN/ß-tubulin and NeuN/tyrosine hydroxylase (TH) antibodies. The soma area and number of intrinsic neurons in the ovarian stroma, surrounding follicles, corpus luteum, or cyst were evaluated. The intrinsic neurons were grouped in cluster-like shapes in ovarian structures. In senescent rats, the intrinsic neurons were mainly localized in the ovarian stroma and around the cysts. The number of neurons was lower in senescent rats than in young adult rats (p < 0.05), but the soma size was larger than in young adult rats. Immunoreactivity to TH indicated the presence of noradrenergic neurons in the ovary with the same characteristics as NeuN/ß-tubulin, which indicates that they are part of the same neuronal group. Taken together, the findings indicate that the intrinsic neurons may be related to the loss of ovarian functions associated with aging.


Assuntos
Ovário , Tubulina (Proteína) , Envelhecimento , Animais , Feminino , Ratos , Ratos Long-Evans , Tirosina 3-Mono-Oxigenase
18.
Reprod Biol Endocrinol ; 9: 41, 2011 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-21450102

RESUMO

In the present study we analyzed the existence of asymmetry in the secretion of steroid hormones in pre-pubertal female rats treated with unilateral ovariectomy (ULO) or unilateral perforation of the abdominal wall (sham-surgery). Treated rats were sacrificed at different times after surgery. Since sham-surgery had an apparent effect on the age of first vaginal estrous (FVE) and serum levels hormone, the results of the sham surgery groups were used to assess the effects of their respective surgery treatment groups. On the day of FVE, compensatory ovulation (CO) and compensatory ovarian hypertrophy (COH) were similar in animals with ULO, regardless of the ovary remaining in situ. In ULO treated animals, progesterone (P4) levels were higher than in animals with sham-surgery one hour after treatment but lower in rats sacrificed at FEV. Left-ULO resulted in lower testosterone (T) concentration 48 and 72 hours after surgery. In rats with Right-ULO lower T concentrations were observed in rats sacrificed one or 72 hours after surgery, and at FVE. ULO (left or right) resulted in lower estradiol (E2) concentrations one or 72 hours after treatment. In rats with Left-ULO, E2 levels were higher 48 hours after surgery and at FVE. Left-ULO resulted in higher levels of follicle stimulating hormone (FSH) five hours after surgery and at FVE. FSH levels were higher in rats with Right-ULO sacrificed on FVE. The present results suggest that in the pre-pubertal rat both ovaries have similar capacities to secrete P4, and that the right ovary has a higher capacity to secrete E2. Taken together, the present results support the idea that the effects of ULO result from the decrease in glandular tissue and changes in the neural information arising from the ovary.


Assuntos
Hormônios Esteroides Gonadais/metabolismo , Ovário/metabolismo , Animais , Estradiol/sangue , Estradiol/metabolismo , Ciclo Estral/fisiologia , Feminino , Hormônio Foliculoestimulante/sangue , Hormônio Foliculoestimulante/metabolismo , Hormônios Esteroides Gonadais/sangue , Humanos , Ovariectomia , Ovário/fisiologia , Ovulação/fisiologia , Progesterona/sangue , Progesterona/metabolismo , Ratos , Maturidade Sexual , Testosterona/sangue , Testosterona/metabolismo
19.
Life Sci ; 265: 118792, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33220286

RESUMO

AIMS: In the cyclic rat in estrus, the vasoactive intestinal peptide (VIP) has an impact on ovarian function, which depends on the endocrine status of the animal. In this work, we aimed to clarify the participation of VIP in the pathophysiological condition of polycystic ovary syndrome (PCOS) using a model of PCOS induced by estradiol valerate (EV-PCOS) in rats. MAIN METHODS: In the cyclic rat in estrus and in the EV-PCOS model, we analyzed the acute effects of blocking VIP receptors with the use of an antagonist (Ant-VIP) injected into the left or right ovarian bursa on the steroidogenic response and ovarian catecholamine levels. KEY FINDINGS: In the cyclic animal in estrus, the treatment with Ant-VIP in the left ovarian bursa resulted in a reduction in testosterone serum levels and in ovarian levels of dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC), without changes in 4-hydroxy-3-methoxyphenyl (MHPG) and norepinephrine (NE). When the treatment was applied on the right side, only MHPG levels increased. In the EV-PCOS model, the treatment with Ant-VIP in the left ovarian bursa increased testosterone, estradiol, MHPG, and NE levels. When the treatment was performed on the right side, progesterone levels decreased and estradiol increased, without changes in ovarian catecholamines. SIGNIFICANCE: The binding of VIP to its receptors differentially regulates steroidogenesis in the cyclic animal in estrus and in the EV-PCOS model. The blocking of VIP signaling produces changes in ovarian catecholamines.


Assuntos
Modelos Animais de Doenças , Ovário/metabolismo , Síndrome do Ovário Policístico/metabolismo , Receptores de Peptídeo Intestinal Vasoativo/antagonistas & inibidores , Receptores de Peptídeo Intestinal Vasoativo/metabolismo , Animais , Catecolaminas/metabolismo , Estradiol/metabolismo , Estradiol/toxicidade , Feminino , Ovário/efeitos dos fármacos , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/tratamento farmacológico , Ratos , Testosterona/metabolismo , Peptídeo Intestinal Vasoativo/antagonistas & inibidores , Peptídeo Intestinal Vasoativo/metabolismo
20.
Reprod Biol Endocrinol ; 8: 99, 2010 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-20723258

RESUMO

The present study tested the hypothesis that if polycystic ovary syndrome (PCOS) results from activating the noradrenergic outflow to the ovary, unilaterally sectioning the superior ovarian nerve (SON) will result in ovulation by the denervated ovary, and the restoration of progesterone (P4), testosterone (T) and estradiol (E2) normal serum level. A single 2 mg dose of estradiol valerate (EV) to adult rats results in the development of a syndrome similar to the human PCOS. Ten-day old rats were injected with EV or vehicle solution (Vh) and were submitted to sham surgery, unilateral or bilateral sectioning of the SON at 24-days of age. The animals were sacrificed at 90 to 92 days of age, when they presented vaginal estrus preceded by a pro-estrus smear. In EV-treated animals, unilateral sectioning of the SON restored ovulation by the innervated ovary and unilateral or bilateral sectioning of the SON normalized testosterone and estradiol levels. These results suggest that aside from an increase in ovarian noradrenergic tone in the ovaries, in the pathogenesis of the PCOS participate other neural influences arriving to the ovaries via the SON, regulating spontaneous ovulation. Changes in P4, T and E2 serum levels induced by EV treatment seem to be controlled by neural signals arising from the abdominal wall and other signals arriving to the ovaries through the SON, and presents asymmetry.


Assuntos
Ovário/inervação , Ovário/cirurgia , Ovulação/fisiologia , Síndrome do Ovário Policístico/reabilitação , Síndrome do Ovário Policístico/cirurgia , Algoritmos , Animais , Contagem de Células , Modelos Animais de Doenças , Estradiol/análogos & derivados , Estradiol/sangue , Estradiol/farmacologia , Feminino , Procedimentos Cirúrgicos em Ginecologia/métodos , Procedimentos Cirúrgicos em Ginecologia/reabilitação , Procedimentos Cirúrgicos em Ginecologia/veterinária , Oócitos/citologia , Ovário/citologia , Ovulação/sangue , Ovulação/efeitos dos fármacos , Indução da Ovulação/métodos , Síndrome do Ovário Policístico/sangue , Síndrome do Ovário Policístico/fisiopatologia , Progesterona/sangue , Ratos , Recuperação de Função Fisiológica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA