Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Proteome Res ; 22(4): 1367-1376, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36857466

RESUMO

Intact protein analysis by mass spectrometry is important for several applications such as assessing post-translational modifications and biotransformation. In particular, intact protein analysis allows the detection of proteoforms that are commonly missed by other approaches such as proteolytic digestion followed by bottom-up analysis. Two quantification methods are mainly used for intact protein data quantification, namely the extracted ion and deconvolution approaches. However, a consensus with regard to a single best practice for intact protein data processing is lacking. Furthermore, many data processing tools are not fit-for-purpose and, as a result, the analysis of intact proteins is laborious and lacks the throughput required to be implemented for the analysis of clinical cohorts. Therefore, in this study, we investigated the application of a software-assisted data analysis and processing workflow in order to streamline intact protein integration, annotation, and quantification via deconvolution. In addition, the assessment of orthogonal data sets generated via middle-up and bottom-up analysis enabled the cross-validation of cleavage proteoform assignments present in seminal prostate-specific antigen (PSA). Furthermore, deconvolution quantification of PSA from patients' urine revealed results that were comparable with manually performed quantification based on extracted ion electropherograms. Overall, the presented workflow allows fast and efficient processing of intact protein data. The raw data is available on MassIVE using the identifier MSV000086699.


Assuntos
Antígeno Prostático Específico , Software , Humanos , Masculino , Fluxo de Trabalho , Espectrometria de Massas , Processamento de Proteína Pós-Traducional , Glicoproteínas
2.
Anal Chem ; 94(18): 6639-6648, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35482581

RESUMO

Sialic acids have diverse biological roles, ranging from promoting up to preventing protein and cellular recognition in health and disease. The various functions of these monosaccharides are owed, in part, to linkage variants, and as a result, linkage-specific analysis of sialic acids is an important aspect of glycomic studies. This has been addressed by derivatization strategies using matrix-assisted laser desorption/ionization mass spectrometry (MS) or sialidase digestion arrays followed by liquid chromatography (LC)-MS. Despite this, these approaches are unable to simultaneously provide unambiguous assignment of sialic acid linkages and assess further isomeric glycan features within a single measurement. Thus, for the first time, we present the combination of procainamide fluorescent labeling with sialic acid linkage-specific derivatization via ethyl esterification and amidation for the analysis of released plasma N-glycans using reversed-phase (RP)LC-fluorescence detection (FD)-MS. As a result, α2,3- and α2,6-sialylated N-glycans, with the same mass prior to derivatization, are differentiated based on retention time, precursor mass, and fragmentation spectra, and additional sialylated isomers were also separated. Furthermore, improved glycan coverage and protocol precision were found via the novel application using a combined FD-MS quantification approach. Overall, this platform achieved unambiguous assignment of N-glycan sialic acid linkages within a single RPLC-FD-MS measurement, and by improving their retention on RPLC, this technique can be used for future investigations of released N-glycans as an additional or orthogonal method to current analytical approaches.


Assuntos
Cromatografia de Fase Reversa , Ácido N-Acetilneuramínico , Ácido N-Acetilneuramínico/química , Polissacarídeos/química , Ácidos Siálicos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
3.
Haematologica ; 107(3): 668-679, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33763999

RESUMO

Terminal sialylation determines the plasma half-life of von Willebrand factor (VWF). A role for macrophage galactose lectin (MGL) in regulating hyposialylated VWF clearance has recently been proposed. In this study, we showed that MGL influences physiological plasma VWF clearance. MGL inhibition was associated with a significantly extended mean residence time and 3-fold increase in endogenous plasma VWF antigen levels (P<0.05). Using a series of VWF truncations, we further demonstrated that the A1 domain of VWF is predominantly responsible for enabling the MGL interaction. Binding of both full-length and VWF-A1-A2-A3 to MGL was significantly enhanced in the presence of ristocetin (P<0.05), suggesting that the MGL-binding site in A1 is not fully accessible in globular VWF. Additional studies using different VWF glycoforms demonstrated that VWF O-linked glycans, clustered at either end of the A1 domain, play a key role in protecting VWF against MGLmediated clearance. Reduced sialylation has been associated with pathological, increased clearance of VWF in patients with von Willebrand disease. Herein, we demonstrate that specific loss of α2-3 linked sialylation from O-glycans results in markedly increased MGL-binding in vitro, and markedly enhanced MGL-mediated clearance of VWF in vivo. Our data further show that the asialoglycoprotein receptor (ASGPR) does not have a significant role in mediating the increased clearance of VWF following loss of O-sialylation. Conversely however, we observed that loss of N-linked sialylation from VWF drives enhanced circulatory clearance predominantly via the ASGPR. Collectively, our data support the hypothesis that in addition to regulating physiological VWF clearance, the MGL receptor works in tandem with ASGPR to modulate enhanced clearance of aberrantly sialylated VWF in the pathogenesis of von Willebrand disease.


Assuntos
Galactose , Ácido N-Acetilneuramínico , Fator de von Willebrand , Galactose/metabolismo , Humanos , Lectinas/metabolismo , Macrófagos/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Polissacarídeos/metabolismo , Fator de von Willebrand/metabolismo
4.
Org Biomol Chem ; 20(24): 4905-4914, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35593095

RESUMO

Sialylglycopeptide (SGP) is a readily available naturally occurring glycopeptide obtained from hen egg yolk which is now commercially available. During SGP extraction, other minor glycopeptide species are identified, bearing N-glycan structures that might be of interest, such as asymmetrically branched and triantennary glycans. As the scale of SGP production increases, recovery of minor glycopeptides and their N-glycans can become more feasible. In this paper, we aim to provide structural characterization of the N-glycans derived from these minor glycopeptides.


Assuntos
Galinhas , Gema de Ovo , Animais , Gema de Ovo/química , Feminino , Glicopeptídeos/química , Polissacarídeos/química
5.
Carbohydr Polym ; 341: 122327, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876725

RESUMO

Bacterial pathogens can cause a broad range of infections with detrimental effects on health. Vaccine development is essential as multi-drug resistance in bacterial infections is a rising concern. Recombinantly produced proteins carrying O-antigen glycosylation are promising glycoconjugate vaccine candidates to prevent bacterial infections. However, methods for their comprehensive structural characterization are lacking. Here, we present a bottom-up approach for their site-specific characterization, detecting N-glycopeptides by nano reversed-phase liquid chromatography-mass spectrometry (RP-LC-MS). Glycopeptide analyses revealed information on partial site-occupancy and site-specific glycosylation heterogeneity and helped corroborate the polysaccharide structures and their modifications. Bottom-up analysis was complemented by intact glycoprotein analysis using nano RP-LC-MS allowing the fast visualization of the polysaccharide distribution in the intact glycoconjugate. At the glycopeptide level, the model glycoconjugates analyzed showed different repeat unit (RU) distributions that spanned from 1 to 21 RUs attached to each of the different glycosylation sites. Interestingly, the intact glycoprotein analysis displayed a RU distribution ranging from 1 to 28 RUs, showing the predominant species when the different glycopeptide distributions are combined in the intact glycoconjugate. The complete workflow based on LC-MS measurements allows detailed and comprehensive analysis of the glycosylation state of glycoconjugate vaccines.


Assuntos
Vacinas Bacterianas , Glicoconjugados , Glicopeptídeos , Glicoconjugados/química , Glicoconjugados/imunologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/química , Glicosilação , Glicopeptídeos/química , Glicopeptídeos/análise , Espectrometria de Massas/métodos , Vacinas Conjugadas/química , Vacinas Conjugadas/imunologia , Cromatografia Líquida/métodos , Cromatografia de Fase Reversa/métodos
6.
Biomolecules ; 13(6)2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37371476

RESUMO

A newly developed analytical strategy was applied to profile the total serum N-glycome of 64 colorectal cancer (CRC) patients before and after surgical intervention. In this cohort, it was previously found that serum N-glycome alterations in CRC were associated with patient survival. Here, fluorescent labeling of serum N-glycans was applied using procainamide and followed by sialic acid derivatization specific for α2,6- and α2,3-linkage types via ethyl esterification and amidation, respectively. This strategy allowed efficient separation of specific positional isomers on reversed-phase liquid chromatography-fluorescence detection-mass spectrometry (RPLC-FD-MS) and complemented the previous glycomics data based on matrix-assisted laser desorption/ionization (MALDI)-MS that did not include such separations. The results from comparing pre-operative CRC to post-operative samples were in agreement with studies that identified a decrease in di-antennary structures with core fucosylation and an increase in sialylated tri- and tetra-antennary N-glycans in CRC patient sera. Pre-operative abundances of N-glycans showed good performance for the classification of adenocarcinoma and led to the revisit of the previous MALDI-MS dataset with regard to histological and clinical data. This strategy has the potential to monitor patient profiles before, during, and after clinical events such as treatment, therapy, or surgery and should also be further explored.


Assuntos
Cromatografia de Fase Reversa , Neoplasias Colorretais , Humanos , Glicosilação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Polissacarídeos/química , Neoplasias Colorretais/cirurgia
7.
J Proteomics ; 238: 104148, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33618028

RESUMO

Early detection of prostate cancer may lead to the overdiagnosis and overtreatment of patients as well as missing significant cancers. The current diagnostic approach uses elevated serum concentrations of prostate-specific antigen (PSA) as an indicator of risk. However, this test has been widely criticized as it shows poor specificity and sensitivity. In order to improve early detection and diagnosis, several studies have investigated whether different PSA proteoforms are correlated to prostate cancer. Until now, studies and methodologies for the comprehensive characterization of PSA proteoforms from biofluids are scarce. For this purpose, we developed an intact protein assay to analyze PSA by capillary electrophoresis-electrospray ionization-mass spectrometry after affinity purification from patients' urine. Here, we determined six proteolytic cleavage variants. In regard to glycosylation, tri-, di-, mono- and non-sialylated complex-type N-glycans were found on non-cleaved PSA, as well as the non-glycosylated variant. The performance of the intact protein assay was assessed using a pooled sample, obtaining an inter-day variability of 15%. Furthermore, urinary patient samples were analyzed by intact protein analysis and a bottom-up approach (glycopeptide analysis). This combined approach revealed complimentary information on both levels, demonstrating the benefit of using two orthogonal techniques to provide a thorough profile of urinary PSA. SIGNIFICANCE: The detection of clinically relevant prostate cancer requires a more specific and sensitive biomarker and, in this case, several PSA proteoforms may be able to aid or improve the current PSA test. However, a comprehensive analysis of the intact PSA proteoform profile is still lacking. This study investigated the PSA proteoforms present in urine and, in particular, determined the relative contribution of cleaved PSA and non-cleaved PSA forms to the total glycosylation profile. Importantly, intact protein analysis did not require further sample treatment before being measured by CE-ESI-MS. Furthermore, its glycosylation was also assessed in a bottom-up approach to provide complementary information. Overall, these results represent an important basis for future characterization and biomarker studies.


Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Eletroforese Capilar , Glicopeptídeos , Glicosilação , Humanos , Masculino , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA