Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 58(20): 2488-2498, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31034208

RESUMO

Zika virus (ZIKV) became an important public health concern because infection was correlated to the development of microcephaly and other neurological disorders. Although the structure of the virion has been determined by cryo-electron microscopy, information about the nucleocapsid is lacking. We used nuclear magnetic resonance to determine the solution structure and dynamics of full length ZIKV capsid protein (ZIKVC). Although most of the protein is structured as described for the capsid proteins of Dengue and West Nile viruses and for truncated ZIKVC (residues 23-98), here we show important differences in the α-helix 1 and N-terminal intrinsically disordered region (IDR). We distinguished two dynamical regions in the ZIKVC IDR, a highly flexible N-terminal end and a transitional disordered region, indicating that it contains ordered segments rather than being completely flexible. The unique size and orientation of α-helix 1 partially occlude the protein hydrophobic cleft. Measurements of the dynamics of α-helix 1, surface exposure, and thermal susceptibility of each backbone amide 1H in protein structure revealed the occlusion of the hydrophobic cleft by α1/α1' and supported α-helix 1 positional uncertainty. On the basis of the findings described here, we propose that the dynamics of ZIKVC structural elements responds to a structure-driven regulation of interaction of the protein with intracellular hydrophobic interfaces, which would have an impact on the switches that are necessary for nucleocapsid assembly. Subtle differences in the sequence of α-helix 1 have an impact on its size and orientation and on the degree of exposure of the hydrophobic cleft, suggesting that α-helix 1 is a hot spot for evolutionary adaptation of the capsid proteins of flaviviruses.


Assuntos
Proteínas do Capsídeo/química , Capsídeo/química , Zika virus/química , Sequência de Aminoácidos , Interações Hidrofóbicas e Hidrofílicas , Proteínas Intrinsicamente Desordenadas/química , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Alinhamento de Sequência
2.
Artigo em Inglês | MEDLINE | ID: mdl-28348154

RESUMO

Virus resistance to antiviral therapies is an increasing concern that makes the development of broad-spectrum antiviral drugs urgent. Targeting of the viral envelope, a component shared by a large number of viruses, emerges as a promising strategy to overcome this problem. Natural and synthetic porphyrins are good candidates for antiviral development due to their relative hydrophobicity and pro-oxidant character. In the present work, we characterized the antiviral activities of protoprophyrin IX (PPIX), Zn-protoporphyrin IX (ZnPPIX), and mesoporphyrin IX (MPIX) against vesicular stomatitis virus (VSV) and evaluated the mechanisms involved in this activity. Treatment of VSV with PPIX, ZnPPIX, and MPIX promoted dose-dependent virus inactivation, which was potentiated by porphyrin photoactivation. All three porphyrins inserted into lipid vesicles and disturbed the viral membrane organization. In addition, the porphyrins also affected viral proteins, inducing VSV glycoprotein cross-linking, which was enhanced by porphyrin photoactivation. Virus incubation with sodium azide and α-tocopherol partially protected VSV from inactivation by porphyrins, suggesting that singlet oxygen (1O2) was the main reactive oxygen species produced by photoactivation of these molecules. Furthermore, 1O2 was detected by 9,10-dimethylanthracene oxidation in photoactivated porphyrin samples, reinforcing this hypothesis. These results reveal the potential therapeutic application of PPIX, ZnPPIX, and MPIX as good models for broad antiviral drug design.


Assuntos
Antivirais/farmacologia , Mesoporfirinas/farmacologia , Protoporfirinas/farmacologia , Vírus da Estomatite Vesicular Indiana/efeitos dos fármacos , Animais , Antracenos/química , Linhagem Celular , Cricetinae , Farmacorresistência Viral , Mesoporfirinas/química , Protoporfirinas/química , Oxigênio Singlete/química , Azida Sódica/farmacologia , Inativação de Vírus/efeitos dos fármacos , alfa-Tocoferol/farmacologia
3.
Biomol NMR Assign ; 17(1): 23-26, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36723824

RESUMO

Dengue virus belongs to the Flaviviridae family, being responsible for an endemic arboviral disease in humans. It is an enveloped virus, whose genome is a positive-stranded RNA packaged by the capsid protein. Dengue virus capsid protein (DENVC) forms homodimers in solution organized in 4 α-helices and an intrinsically disordered N-terminal region. The N-terminal region is involved in the binding of membranous structures in host cells and in the recognition of nucleotides. Here we report the 1H, 15N and 13C resonance assignments of the DENVC with the deletion of the first 19 intrinsically disordered residues. The backbone chemical shift perturbations suggest changes in the α1 and α2 helices between full length and the truncated proteins.


Assuntos
Proteínas do Capsídeo , Vírus da Dengue , Humanos , Proteínas do Capsídeo/química , Vírus da Dengue/química , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Conformação Proteica em alfa-Hélice
4.
Glycobiology ; 21(6): 824-33, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21415035

RESUMO

Nod factors are lipochitoligosaccharides originally produced by the soil bacteria Rhizobia that are involved in the symbiotic process with leguminous plants. Some synthetic analogs of the Nod factors present a strong biological activity, and the conformational behavior of these molecules is of interest for structure/function studies. Nod factor analogs containing an insertion of a phenyl group in the acyl chain at the oligosaccharidic non-reducing end were previously synthesized (Grenouillat N, Vauzeilles B, Bono J-J, Samain E, Beau J-M. 2004. Simple synthesis of nodulation-factor analogues exhibiting high affinity towards a specific binding protein. Angew Chem Int Ed Engl. 43:4644). Conformational studies of natural compounds and synthetic analogs have been performed combining molecular dynamics simulations in explicit water and NMR. Data revealed that the glycosidic head group can adopt only restricted conformations, whereas chemical modifications of the lipid chains, highly flexible in a water environment, influence the global shape of the molecules. Collected structural data could be used in the future to rationalize and understand their biological activity and affinity toward a putative receptor.


Assuntos
Lipopolissacarídeos/química , Nodulação , Configuração de Carboidratos , Lipopolissacarídeos/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Simulação de Dinâmica Molecular , Nodulação/fisiologia , Rizosfera
5.
Glycobiology ; 20(10): 1208-16, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20466653

RESUMO

The conformational features of hyaluronic acid, a key polysaccharide with important biological properties, have been determined through the combined used of nuclear magnetic resonance (NMR) spectroscopy and molecular modeling techniques. A decasaccharide fragment of sodium hyaluronate (HA) was submitted to 3.5 ns of molecular dynamics in explicit water environment form. The same decasaccharide was prepared by hyaluronidase digestion for the experimental study. The approach consisted in the measurements of NMR residual dipolar coupling (RDC) which were used to filter the molecular dynamics data by retaining those structures which were in agreement with the experimental observations. Further analysis of the new conformer ensemble (HA(RDC)) and clustering the molecules with respect to their overall length led to seven representative structures, which were described in terms of their secondary motifs, namely the best fitting helix geometry. As a result, this protocol permitted the assessment that hyaluronic acid can adopt two different arrangements, which can be described by a three- or four-folded left-handed helix, with a higher occurrence of the first one.


Assuntos
Adjuvantes Imunológicos/química , Configuração de Carboidratos , Ácido Hialurônico/química , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Sequência de Carboidratos , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA