Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Rev Argent Microbiol ; 55(1): 3-11, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35760653

RESUMO

Although Staphylococcus aureus increases its relative abundance in psoriasis when compared with the microbiome of healthy subjects, it is not the most important microorganism underlying this disease. However, there is scant data on the role and molecular features of S. aureus strains in psoriasis; therefore, the aim of this study was to evaluate nasal carriage of this microorganism, its phenotypic and molecular characteristics as well as the impact of host factors on its carriage in psoriatic patients. The presence of S. aureus was analyzed in nasal swabs from 46 healthy volunteers and 50 psoriatic patients by conventional microbiology techniques. Nasal carriage of S. aureus was higher in psoriatic patients than in the control group (37.24% vs 22.98%, respectively), being associated to sex (male), age (adults) and severity of the disease (more frequent in moderate and severe cases). Determination of antibiotic resistance detected 12% of ß-lactam resistant isolates, with variable accompanying resistance to macrolides, aminoglycosides and fluoroquinolones. No resistance to rifampicin, vancomycin, mupirocin or trimethoprim/sulfamethoxazole was found. A preliminary molecular characterization of the isolates was performed by PCR amplification of virulence genes. Molecular characterization of the strains did not reveal a predominant strain in psoriatic patients. Although we established host factors related to increased carriage of S. aureus in psoriatic patients, we could not establish the predominance of one type of strain. Genomic and transcriptomic analysis of the isolated strains would be necessary to address this point.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Psoríase , Infecções Estafilocócicas , Adulto , Humanos , Masculino , Staphylococcus aureus/genética , Argentina/epidemiologia , Infecções Estafilocócicas/epidemiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Hospitais Públicos , Portador Sadio/epidemiologia , Portador Sadio/microbiologia , Testes de Sensibilidade Microbiana
2.
Mol Microbiol ; 106(1): 93-108, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28762586

RESUMO

The synthesis of unsaturated fatty acids in Mycobacterium smegmatis is poorly characterized. Bioinformatic analysis revealed four putative fatty acid desaturases in its genome, one of which, MSMEG_1886, is highly homologous to desA3, the only palmitoyl/stearoyl desaturase present in the Mycobacterium tuberculosis genome. A MSMEG_1886 deletion mutant was partially auxotrophic for oleic acid and viable at 37°C and 25°C, although with a long lag phase in liquid medium. Fatty acid analysis suggested that MSMEG_1886 is a palmitoyl/stearoyl desaturase, as the synthesis of palmitoleic acid was abrogated, while oleic acid contents dropped by half in the mutant. Deletion of the operon MSMEG_1741-1743 (highly homologous to a Pseudomonas aeruginosa acyl-CoA desaturase) had little effect on growth of the parental strain; however the double mutant MSMEG_1886-MSMEG_1741-1743 strictly required oleic acid for growth. The ΔMSMEG_1886-ΔMSMEG_1741 double mutant was able to grow (poorly but better than the ΔMSMEG_1886 single mutant) in solid and liquid media devoid of oleic acid, suggesting a repressor role for ΔMSMEG_1741. Fatty acid analysis of the described mutants suggested that MSMEG_1742-43 desaturates C18:0 and C24:0 fatty acids. Thus, although the M. smegmatis desA3 homologue is the major player in unsaturated fatty acid synthesis, a second set of genes is also involved.


Assuntos
Ácidos Graxos Dessaturases/genética , Ácidos Graxos Insaturados/biossíntese , Mycobacterium smegmatis/genética , Sequência de Aminoácidos/genética , Proteínas de Bactérias/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos/biossíntese , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Ácidos Graxos Insaturados/genética , Ácidos Graxos Insaturados/metabolismo , Teste de Complementação Genética/métodos , Deleção de Sequência/genética , Homologia de Sequência de Aminoácidos
3.
Microbiology (Reading) ; 164(12): 1567-1582, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30311878

RESUMO

Mycobacterium smegmatis is intrinsically resistant to thiacetazone, an anti-tubercular thiourea; however we report here that it causes a mild inhibition in growth in liquid medium. Since mycolic acid biosynthesis was affected, we cloned and expressed Mycobacterium smegmatis mycolic acid methyltransferases, postulated as targets for thiacetazone in other mycobacterial species. During this analysis we identified MSMEG_1350 as the methyltransferase involved in epoxy mycolic acid synthesis since its deletion led to their total loss. Phenotypic characterization of the mutant strain showed colony morphology alterations at all temperatures, reduced growth and a slightly increased susceptibility to SDS, lipophilic and large hydrophilic drugs at 20 °C with little effect at 37 °C. No changes were detected between parental and mutant strains in biofilm formation, sliding motility or sedimentation rate. Intriguingly, we found that several mycobacteriophages severely decreased their ability to form plaques in the mutant strain. Taken together our results prove that, in spite of being a minor component of the mycolic acid pool, epoxy-mycolates are required for a proper assembly and functioning of the cell envelope. Further studies are warranted to decipher the role of epoxy-mycolates in the M. smegmatis cell envelope.


Assuntos
Proteínas de Bactérias/genética , Metiltransferases/genética , Micobacteriófagos/fisiologia , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/virologia , Ácidos Micólicos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Temperatura Baixa , Metiltransferases/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/genética , Mycobacterium smegmatis/fisiologia , Deleção de Sequência
4.
J Enzyme Inhib Med Chem ; 31(6): 1726-30, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27146440

RESUMO

During the treatment of tuberculosis infection, oxidative stress due to anti-tubercular drugs may result in tissue inflammation. It was suggested that treatment with antioxidant drugs could be beneficial as an adjunct to anti-tuberculosis drug therapy. Recently our group has shown that several C-glycosides are inhibitors of Mycobacterium tuberculosis ß-carbonic anhydrases (CAs, EC 4.2.1.1). In an effort to develop novel chemotherapeutic agents against tuberculosis, the anti-tubercular and antioxidant activities of a series of C-glycosides containing the phenol or the methoxyaryl moiety were studied. Many compounds showed inhibition of growth of M. tuberculosis H37Rv strain and good antioxidant ability. A glycomimetic incorporating the 3-hydroxyphenyl moiety showed the best activity profile and therefore this functionality represents lead for the development of novel anti-tubercular agents with dual mechanisms of action.


Assuntos
Antioxidantes/farmacologia , Antituberculosos/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Testes de Sensibilidade Microbiana
5.
J Biol Chem ; 287(46): 38434-41, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23002234

RESUMO

Isoxyl (ISO) and thiacetazone (TAC), two prodrugs once used in the clinical treatment of tuberculosis, have long been thought to abolish Mycobacterium tuberculosis (M. tuberculosis) growth through the inhibition of mycolic acid biosynthesis, but their respective targets in this pathway have remained elusive. Here we show that treating M. tuberculosis with ISO or TAC results in both cases in the accumulation of 3-hydroxy C(18), C(20), and C(22) fatty acids, suggestive of an inhibition of the dehydratase step of the fatty-acid synthase type II elongation cycle. Consistently, overexpression of the essential hadABC genes encoding the (3R)-hydroxyacyl-acyl carrier protein dehydratases resulted in more than a 16- and 80-fold increase in the resistance of M. tuberculosis to ISO and TAC, respectively. A missense mutation in the hadA gene of spontaneous ISO- and TAC-resistant mutants was sufficient to confer upon M. tuberculosis high level resistance to both drugs. Other mutations found in hypersusceptible or resistant M. tuberculosis and Mycobacterium kansasii isolates mapped to hadC. Mutations affecting the non-essential mycolic acid methyltransferases MmaA4 and MmaA2 were also found in M. tuberculosis spontaneous ISO- and TAC-resistant mutants. That MmaA4, at least, participates in the activation of the two prodrugs as proposed earlier is not supported by our biochemical evidence. Instead and in light of the known interactions of both MmaA4 and MmaA2 with HadAB and HadBC, we propose that mutations affecting these enzymes may impact the binding of ISO and TAC to the dehydratases.


Assuntos
Mycobacterium bovis/metabolismo , Mycobacterium tuberculosis/metabolismo , Ácidos Micólicos/antagonistas & inibidores , Feniltioureia/análogos & derivados , Tioacetazona/farmacologia , Alelos , Antituberculosos/farmacologia , Parede Celular/metabolismo , Cromatografia Líquida/métodos , Ácido Graxo Sintases/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Genoma Bacteriano , Lipídeos/química , Espectrometria de Massas/métodos , Modelos Químicos , Feniltioureia/farmacologia , Proteínas Recombinantes/química , Análise de Sequência de DNA , Fatores de Tempo
6.
Mol Microbiol ; 86(3): 568-79, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22994892

RESUMO

It has recently been shown that the anti-mycobacterial pro-drug thiacetazone (TAC) inhibits the conversion of double bonds of mycolic acid precursors into cyclopropyl rings in Mycobacterium bovis var BCG, M. marimum and M. chelonae by affecting the cyclopropyl mycolic acid synthases (CMASs) as judged by the build-up of unsaturated mycolate precursors. In our hands, TAC inhibits mycolic acid biosynthesis in Mycobacterium tuberculosis and M. kansasii with almost negligible accumulation of those precursors. Our observations that 'de novo' biosynthesis of all the mycolic acid families decreased upon TAC treatment prompted us to analyse the role of each one of the Type II Fatty Acid Synthase (FASII) enzymes. Overexpression of the hadABC operon, encoding the essential FASII dehydratase complex, but not of any of the remaining FASII genes acting on the elongation of fatty acyl chains leading to the synthesis of meromycolic acids, resulted in high level of resistance to TAC in M. tuberculosis. Spontaneous M. tuberculosis and M. kansasii TAC-resistant mutants isolated during this work revealed mutations in the hadABC genes strongly supporting our proposal that these enzymes are new players in the resistance to this anti-mycobacterial compound.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Enoil-CoA Hidratase/genética , Mycobacterium kansasii/enzimologia , Mycobacterium tuberculosis/enzimologia , Tioacetazona/farmacologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Enoil-CoA Hidratase/química , Enoil-CoA Hidratase/metabolismo , Ácido Graxo Sintase Tipo II/genética , Ácido Graxo Sintase Tipo II/metabolismo , Dados de Sequência Molecular , Mutação , Mycobacterium kansasii/química , Mycobacterium kansasii/efeitos dos fármacos , Mycobacterium kansasii/genética , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Ácidos Micólicos/metabolismo , Óperon , Alinhamento de Sequência
7.
Bioorg Med Chem Lett ; 23(3): 740-3, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23265903

RESUMO

A small series of C-cinnamoyl glycoside containing the phenol moiety was tested for the inhibition of the three Mycobacterium tuberculosis ß-carbonic anhydrases (CAs, EC 4.2.1.1) with activities in the low micromolar range detected. The compounds were also tested for the inhibition of growth of M. tuberculosis H(37)Rv strain, leading to the identification of (E)-1-(2',3',4',6'-tetra-O-acetyl-ß-D-glucopyranosyl)-4-(3-hydroxyphenyl)but-3-en-2-one (1) as the first carbonic anhydrase inhibitor with anti-tubercular activity.


Assuntos
Antituberculosos/síntese química , Antituberculosos/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/farmacologia , Glucosídeos/síntese química , Glucosídeos/farmacologia , Glicosídeos/química , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/química , Inibidores da Anidrase Carbônica/química , Cinamatos/química , Glucosídeos/química , Estrutura Molecular , Relação Estrutura-Atividade
8.
Microbiol Spectr ; 10(4): e0033422, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35880893

RESUMO

Epidemiology and virulence studies of Staphylococcus aureus showed that temperate bacteriophages are one of the most powerful drivers for its evolution not only because of their abundance but also because of the richness of their genetic payload. Here, we report the isolation, genome sequencing, and bioinformatic analysis of 14 bacteriophages induced from lysogenic S. aureus strains from human or veterinary (cattle) origin. The bacteriophages belonged to the Siphoviridae family; were of similar genome size (40 to 45 kbp); and fell into clusters B2, B3, B5, and B7 according to a recent clustering proposal. One of the phages, namely, vB_SauS_308, was the most unusual one, belonging to the sparsely populated subcluster B7 but showing differences in protein family contents compared with the rest of the members. This phage contains a type I endolysin (one catalytic domain and noncanonical cell wall domain [CBD]) and a host recognition module lacking receptor binding protein, cell wall hydrolase, and tail fiber proteins. This phage also lacked virulence genes, which is opposite to what has been reported for subcluster B6 and B7 members. None of six phages, taken as representatives of each of the four subclusters, showed activity on coagulase-negative staphylococci (excepted for two Staphylococcus hominis strains in which propagation and a very slow adsorption rate were observed) nor transducing ability. Immunity tests on S. aureus RN4220 lysogens with each of these phages showed no cross immunity. IMPORTANCE To the best of our knowledge, this set of sequenced bacteriophages is the largest one in South America. Our report describes for the first time the utilization of MultiTwin software to analyze the relationship between phage protein families. Notwithstanding the fact that most of the genetic information obtained correlated with recently published information, due to their geographical origin, the reported analysis adds up to and confirms currently available knowledge of Staphylococcus aureus temperate bacteriophages in terms of phylogeny and role in host evolution.


Assuntos
Bacteriófagos , Infecções Estafilocócicas , Animais , Bacteriófagos/genética , Bovinos , Biologia Computacional , Variação Genética , Genoma Viral , Humanos , Infecções Estafilocócicas/veterinária , Staphylococcus aureus/genética
9.
Microbiol Spectr ; 10(4): e0128822, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35862962

RESUMO

Mycolic acids, a hallmark of the genus Mycobacterium, are unique branched long-chain fatty acids produced by a complex biosynthetic pathway. Due to their essentiality and involvement in various aspects of mycobacterial pathogenesis, the synthesis of mycolic acids-and the identification of the enzymes involved-is a valuable target for drug development. Although most of the core pathway is comparable between species, subtle structure differences lead to different structures delineating the mycolic acid repertoire of tuberculous and some nontuberculous mycobacteria. We here report the characterization of an α'-mycolic acid-deficient Mycobacterium smegmatis mutant obtained by chemical mutagenesis. Whole-genome sequencing and bioinformatic analysis identified a premature stop codon in MSMEG_4301, encoding an acyl-CoA synthetase. Orthologs of MSMEG_4301 are present in all mycobacterial species containing α'-mycolic acids. Deletion of the Mycobacterium abscessus ortholog MAB_1915 abrogated synthesis of α'-mycolic acids; likewise, deletion of MSMEG_4301 in an otherwise wild-type M. smegmatis background also caused loss of these short mycolates. IMPORTANCE Mycobacterium abscessus is a nontuberculous mycobacterium responsible for an increasing number of hard-to-treat infections due to the impervious nature of its cell envelope, a natural barrier to several antibiotics. Mycolic acids are key components of that envelope; thus, their synthesis is a valuable target for drug development. Our results identify the first enzyme involved in α'-mycolic acids, a short-chain member of mycolic acids, loss of which greatly affects growth of this opportunistic pathogen.


Assuntos
Mycobacterium abscessus , Mycobacterium , Vias Biossintéticas/genética , Ácidos Graxos/metabolismo , Mycobacterium/metabolismo , Mycobacterium abscessus/genética , Mycobacterium abscessus/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Ácidos Micólicos/metabolismo , Micobactérias não Tuberculosas
10.
Mol Divers ; 15(4): 1017-24, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21633789

RESUMO

Looking for new active molecules against Mycobacterium tuberculosis, a small focused library of 1,2,3-triazoles was efficiently prepared by click chemistry. Compounds were subsequently tested against different pathogenic and opportunistic mycobacteria including M. avium and M. tuberculosis. Two of them showed MIC at lower µg/mL concentration for M. avium and even below that for M. tuberculosis, being more potent that control drugs.


Assuntos
Mycobacterium avium/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/farmacologia , Triazóis/síntese química , Triazóis/farmacologia , Química Click , Testes de Sensibilidade Microbiana , Bibliotecas de Moléculas Pequenas/química , Triazóis/química
11.
RSC Med Chem ; 12(1): 120-128, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34046604

RESUMO

Triclosan and isoniazid are known antitubercular compounds that have proven to be also active against Leishmania parasites. On these grounds, a collection of 37 diverse 1,2,3-triazoles based on the antitubercular molecules triclosan and 5-octyl-2-phenoxyphenol (8PP) were designed in search of novel structures with leishmanicidal activity and prepared using different alkynes and azides. The 37 compounds were assayed against Leishmania donovani, the etiological agent of leishmaniasis, yielding some analogs with activity at micromolar concentrations and against M. tuberculosis H37Rv resulting in scarce active compounds with an MIC of 20 µM. To study the mechanism of action of these catechols, we analyzed the inhibition activity of the library on the M. tuberculosis enoyl-ACP reductase (ENR) InhA, obtaining poor inhibition of the enzyme. The cytotoxicity against Vero cells was also tested, resulting in none of the compounds being cytotoxic at concentrations of up to 20 µM. Derivative 5f could be considered a valuable starting point for future antileishmanial drug development. The validation of a putative leishmanial InhA orthologue as a therapeutic target needs to be further investigated.

12.
Eur J Med Chem ; 208: 112699, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32927391

RESUMO

A library of thirty N-substituted tosyl N'-acryl-hydrazones was prepared with p-toluenesulfonyl hydrazide, methyl propiolate and different aldehydes in a one-pot synthesis via an aza-Michael reaction. The scope of the reaction was studied, including aliphatic, isoprenylic, aromatic and carbocyclic aldehydes. The prepared collection was tested against Mycobacterium tuberculosis H37Rv. Nine analogs of the collection showed Minimum Inhibitory Concentration ≤10 µM, of which the most active members (MIC of 1.25 µM) were exclusively E isomers. In order to validate the mechanism of action of the most active acrylates, we tested their activity on a M. tuberculosis InhA over-expressing strain obtaining MIC that consistently doubled those obtained on the wild type strain. Additionally, the binding mode of those analogs on M. tuberculosis InhA was investigated by docking simulations. The results displayed a hydrogen bond interaction between the sulfonamide and Ile194 and the carbonyl of the methyl ester with Tyr 158 (both critical residues in the interaction with the fatty acyl chain substrate), where the main differences on the binding mode relays on the hydrophobicity of the nitrogen substituent. Additionally, chemoinformatic analysis was performed to evaluate in silico possible cytotoxicity risk and ADME-Tox profile. Based on their simple preparation and interesting antimycobacterial activity profile, the newly prepared aza-acrylates are promising candidates for antitubercular drug development.


Assuntos
Antituberculosos/farmacologia , Hidrazonas/farmacologia , Compostos de Tosil/farmacologia , Animais , Antituberculosos/síntese química , Antituberculosos/metabolismo , Proteínas de Bactérias/metabolismo , Chlorocebus aethiops , Hidrazonas/síntese química , Hidrazonas/metabolismo , Isoniazida/química , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Oxirredutases/metabolismo , Ligação Proteica , Relação Estrutura-Atividade , Compostos de Tosil/síntese química , Compostos de Tosil/metabolismo , Células Vero
13.
Antimicrob Agents Chemother ; 53(2): 808-10, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19015333

RESUMO

Resistance to rifampin (rifampicin), isoniazid, and streptomycin of 69 Mycobacterium tuberculosis isolates was analyzed by an in-house method based on mycobacteriophage D29 and a colorimetric micromethod. Both methods showed sensitivity and specificity values ranging from 93% to 100%. These simple methods offer an option for drug resistance assessment of M. tuberculosis.


Assuntos
Antituberculosos/farmacologia , Testes de Sensibilidade Microbiana/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Colorimetria , Testes de Sensibilidade Microbiana/economia , Micobacteriófagos/efeitos dos fármacos , Padrões de Referência , Reprodutibilidade dos Testes
14.
Access Microbiol ; 1(10): e000070, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32974504

RESUMO

Azole drugs such as econazole, are active on Mycobacterium tuberculosis and Mycobacterium smegmatis ; however, the identification of their target(s) is still pending. It has been reported that mutations in the non-essential system mmpL5-mmpS5 conferred resistance to econazole in M. tuberculosis . We herein report that an azole-resistant mutant screen in M. smegmatis rendered mutations in rshA, encoding a non-essential anti-sigma H protein.

15.
Int J Antimicrob Agents ; 32(2): 139-44, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18571384

RESUMO

A series of 3-substituted 5-hydroxy-5-trifluoro[chloro]methyl-1H-1-isonicotinoyl-4,5-dihydropyrazoles (2a-i) were synthesised by the cyclocondensation reaction of 4-methoxy-1,1,1-trifluoro[chloro]-4-(substituted)-alk-3-en-2-ones (1a-i) and isoniazid (INH). Their in vitro antimicrobial activity was tested against INH-susceptible Mycobacterium tuberculosis H37Rv, INH-resistant clinical M. tuberculosis isolates and non-tuberculous mycobacteria. Amongst the synthesised compounds, 5-hydroxy-5-trifluoromethyl-4,5-dihydro-1H-1-(isonicotinoyl)-pyrazole (2a) and 5-hydroxy-3-(4-methylphenyl)-5-trifluoromethyl-4,5-dihydro-1H-1-(isonicotinoyl) pyrazole (2d) were found to be the two most active agents against susceptible M. tuberculosis and several INH-resistant strains. The compound 3-(2-furyl)-5-hydroxy-5-trifluoromethyl-4,5-dihydro-1H-1-(isonicotinoyl)pyrazole (2f) was active against all the INH-resistant strains regardless of the genetic background at concentrations two- to four-fold its minimum inhibitory concentration against M. tuberculosis H37Rv. These compounds were inhibitors of mycolic acid biosynthesis, in agreement with the utilisation of the INH scaffold for their design. Interestingly, the most active compound against M. tuberculosis, 5-hydroxy-5-trifluoromethyl-4,5-dihydro-1H-1-(isonicotinoyl)-pyrazole (2a), was even more potent than INH against non-tuberculous mycobacteria.


Assuntos
Antituberculosos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium/efeitos dos fármacos , Pirazóis , Antituberculosos/síntese química , Antituberculosos/farmacologia , Farmacorresistência Bacteriana , Humanos , Isoniazida/química , Isoniazida/farmacologia , Testes de Sensibilidade Microbiana , Pirazóis/síntese química , Pirazóis/farmacologia
16.
Tuberculosis (Edinb) ; 112: 69-78, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30205971

RESUMO

Clinical isolates of Mycobacterium tuberculosis and Mycobacterium bovis are differentially susceptible to 2-Thiophen Hydrazide (TCH); however its mechanism of action or the reasons for that difference are unknown. We report herein that under our experimental conditions, TCH inhibits M. tuberculosis in solid but not in liquid medium, and that in spite of resembling Isoniazid and Ethionamide, it does not affect mycolic acid synthesis. To understand the mechanisms of action of TCH we isolated M. tuberculosis TCH resistant mutants which fell into two groups; one resistant to TCH and Isoniazid but not to Ethionamide or Triclosan, and the other resistant only to TCH with no, or marginal, cross resistance to Isoniazid. A S315T katG mutation conferred resistance to TCH while katG expression from a plasmid reduced M. tuberculosis MIC to this drug, suggesting a possible involvement of KatG in TCH activation. Whole genome sequencing of mutants from this second group revealed a single mutation in the alkylhydroperoxide reductase ahpC promoter locus in half of the mutants, while the remaining contained mutations in dispensable genes. This is the first report of the genetics underlying the action of TCH and of the involvement of ahpC as the sole basis for resistance to an anti-tubercular compound.


Assuntos
Antituberculosos/farmacologia , Ácidos Carboxílicos/farmacologia , Catalase/genética , Farmacorresistência Bacteriana/genética , Etionamida/farmacologia , Isoniazida/farmacologia , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Peroxirredoxinas/genética , Regiões Promotoras Genéticas , Proteínas de Bactérias , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/metabolismo , Ácidos Micólicos/metabolismo
17.
Rev. argent. microbiol ; 55(1): 41-50, mar. 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1441184

RESUMO

Abstract Although Staphylococcus aureus increases its relative abundance in psoriasis when compared with the microbiome of healthy subjects, it is not the most important microorganism underlying this disease. However, there is scant data on the role and molecular features of S. aureus strains in psoriasis; therefore, the aim of this study was to evaluate nasal carriage of this microorganism, its phenotypic and molecular characteristics as well as the impact of host factors on its carriage in psoriatic patients. The presence of S. aureus was analyzed in nasal swabs from 46 healthy volunteers and 50 psoriatic patients by conventional microbiology techniques. Nasal carriage of S. aureus was higher in psoriatic patients than in the control group (37.24% vs 22.98%, respectively), being associated to sex (male), age (adults) and severity of the disease (more frequent in moderate and severe cases). Determination of antibiotic resistance detected 12% of (-lactam resistant isolates, with variable accompanying resistance to macrolides, aminoglycosides and fluoroquinolones. No resistance to rifampicin, vancomycin, mupirocin or trimethoprim/sulfamethoxazole was found. A preliminary molecular characterization of the isolates was performed by PCR amplification of virulence genes. Molecular characterization of the strains did not reveal a predominant strain in psoriatic patients. Although we established host factors related to increased carriage of S. aureus in psoriatic patients, we could not establish the predominance of one type of strain. Genomic and transcriptomic analysis of the isolated strains would be necessary to address this point.


Resumen A pesar de que Staphylococcus aureus incrementa su abundancia relativa en la psoriasis cuando se compara con el microbioma de personas sanas, no es el microorganismo más importante subyacente a la enfermedad. Sin embargo, existen pocos datos sobre el papel y las características moleculares de las cepas de S. aureus en pacientes con psoriasis. Nuestro objetivo fue evaluar la portación nasal de este microorganismo, sus características fenotípicas y moleculares, y el impacto de factores del hospedador sobre dicha portación en estos pacientes. Se analizó la presencia de S. aureus en hisopados nasales de 46 voluntarios sanos y 50 pacientes con psoriasis mediante técnicas microbiológicas convencionales. Se encontró mayor portación en pacientes con psoriasis que en el grupo control (37,24% vs. 22,98%, respectivamente) y esta estuvo asociada al sexo (masculino), la edad (adultos) y la gravedad de la enfermedad (más frecuente en casos moderados a graves). El 12% de los aislamientos de S. aureus mostraron resistencia a betalactámicos, con resistencia acompañante a macrólidos, aminoglucósidos y fluoroquinolonas en grado variable. No se encontró resistencia a rifampicina, vancomicina, mupirocina o trimetroprima/sulfametoxazol. Se realizó una caracterización molecular preliminar de los aislamientos por amplificación de genes de virulencia mediante PCR. Si bien se identificaron factores relacionados con el hospedador que incrementan la portación nasal de S. aureus en pacientes con psoriasis, la caracterización molecular de las cepas no reveló ninguna característica genotípica predominante asociada a esta afección. Se necesitan más estudios genómicos y transcriptómicos para profundizar en esta caracterización.

18.
PLoS One ; 13(8): e0202568, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30114296

RESUMO

New effective compounds for tuberculosis treatment are needed. This study evaluated the effects of a series of quinoxaline-derived chalcones against laboratorial strains and clinical isolates of M. tuberculosis. Six molecules, namely N5, N9, N10, N15, N16, and N23 inhibited the growth of the M. tuberculosis H37Rv laboratorial strain. The three compounds (N9, N15 and N23) with the lowest MIC values were further tested against clinical isolates and laboratory strains with mutations in katG or inhA genes. From these data, N9 was selected as the lead compound for further investigation. Importantly, this chalcone displayed a synergistic effect when combined with moxifloxacin. Noteworthy, the anti-tubercular effects of N9 did not rely on inhibition of mycolic acids synthesis, circumventing important mechanisms of resistance. Interactions with cytochrome P450 isoforms and toxic effects were assessed in silico and in vitro. The chalcone N9 was not predicted to elicit any mutagenic, genotoxic, irritant, or reproductive effects, according to in silico analysis. Additionally, N9 did not cause mutagenicity or genotoxicity, as revealed by Salmonella/microsome and alkaline comet assays, respectively. Moreover, N9 did not inhibit the cytochrome P450 isoforms CYP3A4/5, CYP2C9, and CYP2C19. N9 can be considered a potential lead molecule for development of a new anti-tubercular therapeutic agent.


Assuntos
Antituberculosos/farmacologia , Chalconas/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Proteínas de Bactérias/genética , Catalase/genética , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP3A/genética , Sistema Enzimático do Citocromo P-450/genética , Humanos , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/patogenicidade , Ácidos Micólicos/antagonistas & inibidores , Oxirredutases/genética , Quinoxalinas/farmacologia , Tuberculose/genética , Tuberculose/microbiologia , Tuberculose/patologia
19.
Chem Biol ; 13(3): 297-307, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16638535

RESUMO

2-Hexadecynoic acid and 2-octadecynoic acid have cidal activity against Mycobacterium smegmatis and Mycobacterium bovis BCG. At subinhibitory concentrations, M. smegmatis rapidly transformed [1-(14)C]-2-hexadecynoic acid into endogenous fatty acids and elongated them into mycolic acids. Toxic concentrations of 2-hexadecynoic acid resulted in accumulation of 3-ketohexadecanoic acid, which blocked fatty acid biosynthesis, and 3-hexadecynoic acid, an inhibitor of fatty acid degradation. The combination of these two metabolites is necessary to achieve the inhibition of M. smegmatis. We conclude that 2- and 3-hexa/octadecynoic acids inhibit mycolic acid biosynthesis, fatty acid biosynthesis, and fatty acid degradation, pathways of significant importance for mycobacteria.


Assuntos
Antibacterianos/farmacologia , Ácidos Graxos Insaturados/farmacologia , Ácidos Graxos/metabolismo , Mycobacterium/efeitos dos fármacos , Alcinos/farmacologia , Ácidos Graxos/biossíntese , Modelos Químicos , Mycobacterium/metabolismo , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium bovis/metabolismo , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/metabolismo , Ácidos Micólicos/antagonistas & inibidores , Ácidos Micólicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA