Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(38): 9622-9627, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30181276

RESUMO

The brain of mammals differs from that of all other vertebrates, in having a six-layered neocortex that is extensively interconnected within and between hemispheres. Interhemispheric connections are conveyed through the anterior commissure in egg-laying monotremes and marsupials, whereas eutherians evolved a separate commissural tract, the corpus callosum. Although the pattern of interhemispheric connectivity via the corpus callosum is broadly shared across eutherian species, it is not known whether this pattern arose as a consequence of callosal evolution or instead corresponds to a more ancient feature of mammalian brain organization. Here we show that, despite cortical axons using an ancestral commissural route, monotremes and marsupials share features of interhemispheric connectivity with eutherians that likely predate the origin of the corpus callosum. Based on ex vivo magnetic resonance imaging and tractography, we found that connections through the anterior commissure in both fat-tailed dunnarts (Marsupialia) and duck-billed platypus (Monotremata) are spatially segregated according to cortical area topography. Moreover, cell-resolution retrograde and anterograde interhemispheric circuit mapping in dunnarts revealed several features shared with callosal circuits of eutherians. These include the layered organization of commissural neurons and terminals, a broad map of connections between similar (homotopic) regions of each hemisphere, and regions connected to different areas (heterotopic), including hyperconnected hubs along the medial and lateral borders of the cortex, such as the cingulate/motor cortex and claustrum/insula. We therefore propose that an interhemispheric connectome originated in early mammalian ancestors, predating the evolution of the corpus callosum. Because these features have been conserved throughout mammalian evolution, they likely represent key aspects of neocortical organization.


Assuntos
Evolução Biológica , Conectoma , Corpo Caloso/fisiologia , Mamíferos/fisiologia , Neocórtex/fisiologia , Animais , Corpo Caloso/citologia , Corpo Caloso/diagnóstico por imagem , Conjuntos de Dados como Assunto , Imagem de Tensor de Difusão , Feminino , Imageamento por Ressonância Magnética , Neocórtex/citologia , Neocórtex/diagnóstico por imagem , Vias Neurais/fisiologia
2.
PLoS One ; 12(9): e0184450, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28880940

RESUMO

Most of our understanding of forebrain development comes from research of eutherian mammals, such as rodents, primates, and carnivores. However, as the cerebral cortex forms largely prenatally, observation and manipulation of its development has required invasive and/or ex vivo procedures. Marsupials, on the other hand, are born at comparatively earlier stages of development and most events of forebrain formation occur once attached to the teat, thereby permitting continuous and non-invasive experimental access. Here, we take advantage of this aspect of marsupial biology to establish and characterise a resourceful laboratory model of forebrain development: the fat-tailed dunnart (Sminthopsis crassicaudata), a mouse-sized carnivorous Australian marsupial. We present an anatomical description of the postnatal development of the body, head and brain in dunnarts, and provide a staging system compatible with human and mouse developmental stages. As compared to eutherians, the orofacial region develops earlier in dunnarts, while forebrain development is largely protracted, extending for more than 40 days versus ca. 15 days in mice. We discuss the benefits of fat-tailed dunnarts as laboratory animals in studies of developmental biology, with an emphasis on how their accessibility in the pouch can help address new experimental questions, especially regarding mechanisms of brain development and evolution.


Assuntos
Prosencéfalo Basal/embriologia , Marsupiais/embriologia , Animais , Prosencéfalo Basal/crescimento & desenvolvimento , Prosencéfalo Basal/metabolismo , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Biologia do Desenvolvimento , Humanos , Marsupiais/crescimento & desenvolvimento , Marsupiais/metabolismo , Camundongos
3.
Nat Genet ; 49(4): 511-514, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28250454

RESUMO

Brain malformations involving the corpus callosum are common in children with developmental disabilities. We identified DCC mutations in four families and five sporadic individuals with isolated agenesis of the corpus callosum (ACC) without intellectual disability. DCC mutations result in variable dominant phenotypes with decreased penetrance, including mirror movements and ACC associated with a favorable developmental prognosis. Possible phenotypic modifiers include the type and location of mutation and the sex of the individual.


Assuntos
Agenesia do Corpo Caloso/genética , Deficiências do Desenvolvimento/genética , Mutação/genética , Receptores de Superfície Celular/genética , Proteínas Supressoras de Tumor/genética , Anormalidades Múltiplas/genética , Encéfalo/patologia , Corpo Caloso/patologia , Receptor DCC , Família , Feminino , Humanos , Masculino , Malformações do Sistema Nervoso/genética , Células-Tronco Neurais/patologia , Penetrância , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA