Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 105(1): 271-285, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33201275

RESUMO

In order to evaluate the impact of plant-based hydrolysates on CHO cells, a transcriptomic study was undertaken using cottonseed hydrolysate and Illumina's NextSeq transcriptomics profiling for 2 days of a batch cell culture. While cottonseed hydrolysate extended cell growth and increased antibody titer, significant effects were seen on transcriptomic signatures of supplemented cultures when compared to untreated cultures, evaluated using fold change, gene ontology (GO), and KEGG pathway analysis. Transcription and other factors commonly associated with cell growth such as those of the Atf family and homeobox proteins were upregulated while genes in the Hippo signaling pathway were downregulated. Genes involved in anabolic pathways such as gluconeogenesis and those involving protein folding and translation elongation were upregulated. GO analysis of biological processes for cottonseed-supplemented cultures indicated enrichments in DNA replication, protein processing, and unfolded protein response while molecular functions associated with growth such as GTPases, ATP binding, and aminoacyl t-RNA ligase activity were also enriched. Cellular components associated with structural integrity such as actin cytoskeleton, microtubules, mitochondrion, and Lewy body were enriched. Enriched KEGG pathways include growth-associated pathways such as cell cycle, pI3K-AKT-mTOR, and cancer-related pathways as well as those enhancing glycan metabolism, purine metabolism, amino acid biosynthesis, and protein processing in the endoplasmic reticulum (ER). These transcriptomic profiles provide insights into the roles that hydrolysates such as cottonseed can play in altering CHO cell growth and other physiological characteristics as well as suggesting ways in which CHO cell culture may be modified for enhancing performance in biotechnology applications. KEY POINTS: • Hydrolysate-supplemented cultures increased mammalian cell growth and productivity. • Fold-change analysis revealed upregulation in transcription and translation. • Enriched GOs and KEGG pathways including cell cycle and metabolism were observed.


Assuntos
Óleo de Sementes de Algodão , Transcriptoma , Animais , Células CHO , Cricetinae , Cricetulus , Fosfatidilinositol 3-Quinases
2.
Biotechnol J ; 18(6): e2200243, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36892270

RESUMO

Hydrolysates are used as media supplements although their role is not well characterized. In this study, cottonseed hydrolysates, which contained peptides and galactose as supplemental substrates, were added to Chinese hamster ovary (CHO) batch cultures, enhancing cell growth, immunoglobulin (IgG) titers, and productivities. Extracellular metabolomics coupled with tandem mass tag (TMT) proteomics revealed metabolic and proteomic changes in cottonseed-supplemented cultures. Shifts in production and consumption dynamics of glucose, glutamine, lactate, pyruvate, serine, glycine, glutamate, and aspartate suggest changes in tricarboxylic acid (TCA) and glycolysis metabolism following hydrolysate inputs. Quantitative proteomics revealed 5521 proteins and numerous changes in relative abundance of proteins related to growth, metabolism, oxidative stress, protein productivity, and apoptosis/cell death at day 5 and day 6. Differential abundance of amino acid transporter proteins and catabolism enzymes such as branched-chain-amino-acid aminotransferase (BCAT)1 and fumarylacetoacetase (FAH) can alter availability and utilization of several amino acids. Also, pathways involved in growth including the polyamine biosynthesis through higher ornithine decarboxylase (ODC1) abundance and hippo signaling were upregulated and downregulated, respectively. Central metabolism rewiring was indicated by glyceraldehyde-3-phosphate dehydrogenase (GAPDH) downregulation, which corresponded with re-uptake of secreted lactate in the cottonseed-supplemented cultures. Overall, cottonseed hydrolysate supplementation modified culture performance by altering cellular activities critical to growth and protein productivity including metabolism, transport, mitosis, transcription, translation, protein processing, and apoptosis. HIGHLIGHTS: Cottonseed hydrolysate, as a medium additive, enhances Chinese hamster ovary (CHO) cell culture performance. Metabolite profiling and tandem mass tag (TMT) proteomics characterize its impact on CHO cells. Rewired nutrient utilization is observed via glycolysis, amino acid, and polyamine metabolism. Hippo signaling pathway impacts cell growth in the presence of cottonseed hydrolysate.


Assuntos
Óleo de Sementes de Algodão , Proteômica , Cricetinae , Animais , Cricetulus , Células CHO , Técnicas de Cultura Celular por Lotes , Ácido Láctico/metabolismo , Ácido Pirúvico , Aminoácidos/metabolismo , Suplementos Nutricionais , Poliaminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA