Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Plant J ; 117(5): 1432-1452, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38044809

RESUMO

Cells save their energy during nitrogen starvation by selective autophagy of ribosomes and degradation of RNA to ribonucleotides and nucleosides. Nucleosides are hydrolyzed by nucleoside N-ribohydrolases (nucleosidases, NRHs). Subclass I of NRHs preferentially hydrolyzes the purine ribosides while subclass II is more active towards uridine and xanthosine. Here, we performed a crystallographic and kinetic study to shed light on nucleoside preferences among plant NRHs followed by in vivo metabolomic and phenotyping analyses to reveal the consequences of enhanced nucleoside breakdown. We report the crystal structure of Zea mays NRH2b (subclass II) and NRH3 (subclass I) in complexes with the substrate analog forodesine. Purine and pyrimidine catabolism are inseparable because nucleobase binding in the active site of ZmNRH is mediated via a water network and is thus unspecific. Dexamethasone-inducible ZmNRH overexpressor lines of Arabidopsis thaliana, as well as double nrh knockout lines of moss Physcomitrium patents, reveal a fine control of adenosine in contrast to other ribosides. ZmNRH overexpressor lines display an accelerated early vegetative phase including faster root and rosette growth upon nitrogen starvation or osmotic stress. Moreover, the lines enter the bolting and flowering phase much earlier. We observe changes in the pathways related to nitrogen-containing compounds such as ß-alanine and several polyamines, which allow plants to reprogram their metabolism to escape stress. Taken together, crop plant breeding targeting enhanced NRH-mediated nitrogen recycling could therefore be a strategy to enhance plant growth tolerance and productivity under adverse growth conditions.


Assuntos
Arabidopsis , Nucleosídeos , Nucleosídeos/metabolismo , Nitrogênio/metabolismo , Melhoramento Vegetal , Plantas/metabolismo , Uridina/metabolismo , Arabidopsis/genética
2.
Biochem J ; 481(2): 93-117, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38058289

RESUMO

Plants genetically modified by the pathogenic Agrobacterium strain C58 synthesize agrocinopines A and B, whereas those modified by the pathogenic strain Bo542 produce agrocinopines C and D. The four agrocinopines (A, B, C and D) serve as nutrients by agrobacteria and signaling molecule for the dissemination of virulence genes. They share the uncommon pyranose-2-phosphate motif, represented by the l-arabinopyranose moiety in agrocinopines A/B and the d-glucopyranose moiety in agrocinopines C/D, also found in the antibiotic agrocin 84. They are imported into agrobacterial cytoplasm via the Acc transport system, including the solute-binding protein AccA coupled to an ABC transporter. We have previously shown that unexpectedly, AccA from strain C58 (AccAC58) recognizes the pyranose-2-phosphate motif present in all four agrocinopines and agrocin 84, meaning that strain C58 is able to import agrocinopines C/D, originating from the competitor strain Bo542. Here, using agrocinopine derivatives and combining crystallography, affinity and stability measurements, modeling, molecular dynamics, in vitro and vivo assays, we show that AccABo542 and AccAC58 behave differently despite 75% sequence identity and a nearly identical ligand binding site. Indeed, strain Bo542 imports only compounds containing the d-glucopyranose-2-phosphate moiety, and with a lower affinity compared with strain C58. This difference in import efficiency makes C58 more competitive than Bo542 in culture media. We can now explain why Agrobacterium/Allorhizobium vitis strain S4 is insensitive to agrocin 84, although its genome contains a conserved Acc transport system. Overall, our work highlights AccA proteins as a case study, for which stability and dynamics drive specificity.


Assuntos
Agrobacterium tumefaciens , Antibacterianos , Plasmídeos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Ligantes , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Sítios de Ligação , Fosfatos/metabolismo , Proteínas de Bactérias/metabolismo
3.
Plant J ; 114(3): 482-498, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36786691

RESUMO

Polyamines such as spermidine and spermine are essential regulators of cell growth, differentiation, maintenance of ion balance and abiotic stress tolerance. Their levels are controlled by the spermidine/spermine N1 -acetyltransferase (SSAT) via acetylation to promote either their degradation or export outside the cell as shown in mammals. Plant genomes contain at least one gene coding for SSAT (also named NATA for N-AcetylTransferase Activity). Combining kinetics, HPLC-MS and crystallography, we show that three plant SSATs, one from the lower plant moss Physcomitrium patens and two from the higher plant Zea mays, acetylate various aliphatic polyamines and two amino acids lysine (Lys) and ornithine (Orn). Thus, plant SSATs exhibit a broad substrate specificity, unlike more specific human SSATs (hSSATs) as hSSAT1 targets polyamines, whereas hSSAT2 acetylates Lys and thiaLys. The crystal structures of two PpSSAT ternary complexes, one with Lys and CoA, the other with acetyl-CoA and polyethylene glycol (mimicking spermine), reveal a different binding mode for polyamine versus amino acid substrates accompanied by structural rearrangements of both the coenzyme and the enzyme. Two arginine residues, unique among plant SSATs, hold the carboxyl group of amino acid substrates. The most abundant acetylated compound accumulated in moss was N6 -acetyl-Lys, whereas N5 -acetyl-Orn, known to be toxic for aphids, was found in maize. Both plant species contain very low levels of acetylated polyamines. The present study provides a detailed biochemical and structural basis of plant SSAT enzymes that can acetylate a wide range of substrates and likely play various roles in planta.


Assuntos
Poliaminas , Espermidina , Animais , Humanos , Poliaminas/metabolismo , Espermina/metabolismo , Zea mays/metabolismo , Lisina/metabolismo , Ornitina/metabolismo , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Catálise , Mamíferos/metabolismo
4.
J Exp Bot ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776394

RESUMO

Cytokinin oxidase/dehydrogenase (CKX) inhibitors reduce the degradation of cytokinins in plants and thereby may improve the efficiency of agriculture and plant tissue culture-based practices. Here, we report a synthesis and structure-activity relationship study of novel urea derivatives concerning their CKX inhibitory activity. The best compounds showed sub-nanomolar IC50 values with maize ZmCKX1, the lowest value yet documented. Other CKX isoforms of maize (Zea mays) and Arabidopsis were also inhibited very effectively. The binding mode of four compounds was characterized based on high-resolution crystal complex structures. Using the soil nematode Caenorhabditis elegans, and human skin fibroblasts, key CKX inhibitors with low toxicity were identified. These compounds enhanced the shoot regeneration of Lobelia, Drosera, and Plectranthus, as well as the growth of Arabidopsis and Brassica napus. At the same time, a key compound (namely 82), activated a cytokinin primary response gene ARR5:GUS and cytokinin sensor TCSv2:GUS, without activating the Arabidopsis cytokinin receptors AHK3 and AHK4. This strongly implies that the effect of compound 82 is due to the upregulation of cytokinin signalling. Overall, this work presents highly effective and easily prepared CKX inhibitors with a low risk of environmental toxicity for further investigation of their potential in agriculture and biotechnology.

5.
Nucleic Acids Res ; 49(1): 529-546, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33313837

RESUMO

A species-specific region, denoted SpG8-1b allowing hydroxycinnamic acids (HCAs) degradation is important for the transition between the two lifestyles (rhizospheric versus pathogenic) of the plant pathogen Agrobacterium fabrum. Indeed, HCAs can be either used as trophic resources and/or as induced-virulence molecules. The SpG8-1b region is regulated by two transcriptional regulators, namely, HcaR (Atu1422) and Atu1419. In contrast to HcaR, Atu1419 remains so far uncharacterized. The high-resolution crystal structures of two fortuitous citrate complexes, two DNA complexes and the apoform revealed that the tetrameric Atu1419 transcriptional regulator belongs to the VanR group of Pfam PF07729 subfamily of the large GntR superfamily. Until now, GntR regulators were described as dimers. Here, we showed that Atu1419 represses three genes of the HCAs catabolic pathway. We characterized both the effector and DNA binding sites and identified key nucleotides in the target palindrome. From promoter activity measurement using defective gene mutants, structural analysis and gel-shift assays, we propose N5,N10-methylenetetrahydrofolate as the effector molecule, which is not a direct product/substrate of the HCA degradation pathway. The Zn2+ ion present in the effector domain has both a structural and regulatory role. Overall, our work shed light on the allosteric mechanism of transcription employed by this GntR repressor.


Assuntos
Agrobacterium/metabolismo , Proteínas de Bactérias/fisiologia , Ácidos Cumáricos/metabolismo , Família Multigênica , Proteínas Repressoras/fisiologia , Agrobacterium/genética , Regulação Alostérica , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Sítios de Ligação , Cristalografia por Raios X , Regulação Bacteriana da Expressão Gênica , Genes Sintéticos , Modelos Moleculares , Regiões Promotoras Genéticas/genética , Conformação Proteica , Domínios Proteicos , Multimerização Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/isolamento & purificação , Citrato de Sódio , Tetra-Hidrofolatos/fisiologia , Zinco/fisiologia
6.
J Exp Bot ; 72(2): 355-370, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-32945834

RESUMO

Increasing crop productivity is our major challenge if we are to meet global needs for food, fodder and fuel. Controlling the content of the plant hormone cytokinin is a method of improving plant productivity. Cytokinin oxidase/dehydrogenase (CKO/CKX) is a major target in this regard because it degrades cytokinins. Here, we describe the synthesis and biological activities of new CKX inhibitors derived mainly from diphenylurea. They were tested on four CKX isoforms from maize and Arabidopsis, where the best compounds showed IC50 values in the 10-8 M concentration range. The binding mode of the most efficient inhibitors was characterized from high-resolution crystal complexed structures. Although these compounds do not possess intrinsic cytokinin activity, we have demonstrated their tremendous potential for use in the plant tissue culture industry as well as in agriculture. We have identified a key substance, compound 19, which not only increases stress resistance and seed yield in Arabidopsis, but also improves the yield of wheat, barley and rapeseed grains under field conditions. Our findings reveal that modulation of cytokinin levels via CKX inhibition can positively affect plant growth, development and yield, and prove that CKX inhibitors can be an attractive target in plant biotechnology and agriculture.


Assuntos
Arabidopsis , Oxirredutases , Biotecnologia , Citocininas
7.
Biochem J ; 477(3): 615-628, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31922182

RESUMO

Agrobacterium tumefaciens pathogens use specific compounds denoted opines as nutrients in their plant tumor niche. These opines are produced by the host plant cells genetically modified by agrobacteria. They are imported into bacteria via solute-binding proteins (SBPs) in association with ATP-binding cassette transporters. The mannityl-opine family encompasses mannopine, mannopinic acid, agropine and agropinic acid. Structural and affinity data on mannopinic acid bound to SBPs are currently lacking while those of the three others mannityl opines are available. We investigated the molecular basis of two pathways for mannopinic acid uptake. MoaA was proposed as the specific SBP for mannopinic acid import in mannityl opines-assimilating agrobacteria, which was validated here using genetic studies and affinity measurements. We structurally characterized the mannopinic acid-binding mode of MoaA in two crystal forms at 2.05 and 1.57 Šresolution. We demonstrated that the non-specific SBP MotA, so far characterized as mannopine and Amadori compound importer, was also able to transport mannopinic acid. The structure of MotA bound to mannopinic acid at 2.2 Šresolution defines a different mannopinic acid-binding signature, similar to that of mannopine. Combining in vitro and in vivo approaches, this work allowed us to complete the characterization of the mannityl-opines assimilation pathways, highlighting the important role of two dual imports of agropinic and mannopinic acids. Our data shed new light on how the mannityl-opines contribute to the establishment of the ecological niche of agrobacteria from the early to the late stages of tumor development.


Assuntos
Transporte Biológico , Proteínas de Transporte , Manitol/análogos & derivados , Tumores de Planta/microbiologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Agrobacterium tumefaciens/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cristalografia , Genes Bacterianos , Interações entre Hospedeiro e Microrganismos , Manitol/química , Manitol/metabolismo , Oxazinas/metabolismo
8.
Biochem J ; 476(1): 165-178, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30552142

RESUMO

Agrobacterium tumefaciens pathogens genetically modify their host plants to drive the synthesis of opines in plant tumors. The mannityl-opine family encompasses mannopine, mannopinic acid, agropine and agropinic acid. These opines serve as nutrients and are imported into bacteria via periplasmic-binding proteins (PBPs) in association with ABC transporters. Structural and affinity data on agropine and agropinic acid opines bound to PBPs are currently lacking. Here, we investigated the molecular basis of AgtB and AgaA, proposed as the specific PBP for agropine and agropinic acid import, respectively. Using genetic approaches and affinity measurements, we identified AgtB and its transporter as responsible for agropine uptake in agropine-assimilating agrobacteria. Nonetheless, we showed that AgtB binds agropinic acid with a higher affinity than agropine, and we structurally characterized the agropinic acid-binding mode through three crystal structures at 1.4, 1.74 and 1.9 Šresolution. In the crystallization time course, obtaining a crystal structure of AgtB with agropine was unsuccessful due to the spontaneous lactamization of agropine into agropinic acid. AgaA binds agropinic acid only with a similar affinity in nanomolar range as AgtB. The structure of AgaA bound to agropinic acid at 1.65 Šresolution defines a different agropinic acid-binding signature. Our work highlights the structural and functional characteristics of two efficient agropinic acid assimilation pathways, of which one is also involved in agropine assimilation.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Agrobacterium tumefaciens , Proteínas de Bactérias , Manitol/análogos & derivados , Oxazinas , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Agrobacterium tumefaciens/química , Agrobacterium tumefaciens/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Transporte Biológico/fisiologia , Manitol/química , Manitol/metabolismo , Oxazinas/química , Oxazinas/metabolismo , Domínios Proteicos , Relação Estrutura-Atividade
9.
J Biol Chem ; 293(21): 7930-7941, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29602905

RESUMO

The bacterial plant pathogen Agrobacterium fabrum uses periplasmic-binding proteins (PBPs) along with ABC transporters to import a wide variety of plant molecules as nutrients. Nonetheless, how A. fabrum acquires plant metabolites is incompletely understood. Using genetic approaches and affinity measurements, we identified here the PBP MelB and its transporter as being responsible for the uptake of the raffinose family of oligosaccharides (RFO), which are the most widespread d-galactose-containing oligosaccharides in higher plants. We also found that the RFO precursor galactinol, recently described as a plant defense molecule, is imported into Agrobacterium via MelB with nanomolar range affinity. Structural analyses and binding mode comparisons of the X-ray structures of MelB in complex with raffinose, stachyose, galactinol, galactose, and melibiose (a raffinose degradation product) revealed how MelB recognizes the nonreducing end galactose common to all these ligands and that MelB has a strong preference for a two-unit sugar ligand. Of note, MelB conferred a competitive advantage to A. fabrum in colonizing the rhizosphere of tomato plants. Our integrative work highlights the structural and functional characteristics of melibiose and galactinol assimilation by A. fabrum, leading to a competitive advantage for these bacteria in the rhizosphere. We propose that the PBP MelB, which is highly conserved among both symbionts and pathogens from Rhizobiace family, is a major trait in these bacteria required for early steps of plant colonization.


Assuntos
Agrobacterium tumefaciens/metabolismo , Proteínas de Bactérias/metabolismo , Dissacarídeos/metabolismo , Nutrientes/metabolismo , Plantas/microbiologia , Agrobacterium tumefaciens/crescimento & desenvolvimento , Agrobacterium tumefaciens/isolamento & purificação , Proteínas de Bactérias/química , Cristalografia por Raios X , Conformação Proteica
10.
Org Biomol Chem ; 17(5): 1090-1096, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30632589

RESUMO

The first non-natural derivative of the rare d-glucose-2-phosphate (G2P), namely glucose-2-(O-lactic acid phosphate) (G2LP), has been synthesized. When used as sole carbon source, G2LP enables bacterial growth of the plant pathogenic strain Agrobacterium fabrum C58 (formerly referred to as Agrobacterium tumefaciens). X-ray crystallography and affinity measurements investigations reveal that G2LP binds the periplasmic binding protein (PBP) AccA similarly to the natural compounds and with the same affinity. Moreover, enzymatic assays show that it is able to serve as substrate of the phosphodiesterase AccF. The properties found for G2LP demonstrate that the very unusual glucose-2-phosphoryl residue, present in G2LP, can be used as structural feature for designing non-natural systems fully compatible with the Acc cascade of A. fabrum.


Assuntos
Agrobacterium/química , Proteínas de Bactérias/metabolismo , Ésteres/síntese química , Glucofosfatos/síntese química , Proteínas Periplásmicas de Ligação/metabolismo , Agrobacterium/crescimento & desenvolvimento , Cristalografia por Raios X , Ésteres/química , Ésteres/metabolismo , Glucofosfatos/química , Glucofosfatos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Especificidade por Substrato
11.
Plant J ; 92(2): 229-243, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28749584

RESUMO

Lower plant species including some green algae, non-vascular plants (bryophytes) as well as the oldest vascular plants (lycopods) and ferns (monilophytes) possess a unique aldehyde dehydrogenase (ALDH) gene named ALDH21, which is upregulated during dehydration. However, the gene is absent in flowering plants. Here, we show that ALDH21 from the moss Physcomitrella patens codes for a tetrameric NADP+ -dependent succinic semialdehyde dehydrogenase (SSALDH), which converts succinic semialdehyde, an intermediate of the γ-aminobutyric acid (GABA) shunt pathway, into succinate in the cytosol. NAD+ is a very poor coenzyme for ALDH21 unlike for mitochondrial SSALDHs (ALDH5), which are the closest related ALDH members. Structural comparison between the apoform and the coenzyme complex reveal that NADP+ binding induces a conformational change of the loop carrying Arg-228, which seals the NADP+ in the coenzyme cavity via its 2'-phosphate and α-phosphate groups. The crystal structure with the bound product succinate shows that its carboxylate group establishes salt bridges with both Arg-121 and Arg-457, and a hydrogen bond with Tyr-296. While both arginine residues are pre-formed for substrate/product binding, Tyr-296 moves by more than 1 Å. Both R121A and R457A variants are almost inactive, demonstrating a key role of each arginine in catalysis. Our study implies that bryophytes but presumably also some green algae, lycopods and ferns, which carry both ALDH21 and ALDH5 genes, can oxidize SSAL to succinate in both cytosol and mitochondria, indicating a more diverse GABA shunt pathway compared with higher plants carrying only the mitochondrial ALDH5.


Assuntos
Briófitas/genética , Gleiquênias/genética , Genes de Plantas/genética , Succinato-Semialdeído Desidrogenase/genética , Briófitas/enzimologia , Gleiquênias/enzimologia , Genes de Plantas/fisiologia , Filogenia , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato , Succinato-Semialdeído Desidrogenase/metabolismo , Ácido Succínico/metabolismo , Ácido gama-Aminobutírico/análogos & derivados , Ácido gama-Aminobutírico/metabolismo
12.
Mol Plant Microbe Interact ; 31(8): 814-822, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29460677

RESUMO

Regulatory factors are key components for the transition between different lifestyles to ensure rapid and appropriate gene expression upon perceiving environmental cues. Agrobacterium fabrum C58 (formerly called A. tumefaciens C58) has two contrasting lifestyles: it can interact with plants as either a rhizosphere inhabitant (rhizospheric lifestyle) or a pathogen that creates its own ecological niche in a plant tumor via its tumor-inducing plasmid (pathogenic lifestyle). Hydroxycinnamic acids are known to play an important role in the pathogenic lifestyle of Agrobacterium spp. but can be degraded in A. fabrum species. We investigated the molecular and ecological mechanisms involved in the regulation of A. fabrum species-specific genes responsible for hydroxycinnamic acid degradation. We characterized the effectors (feruloyl-CoA and p-coumaroyl-CoA) and the DNA targets of the MarR transcriptional repressor, which we named HcaR, which regulates hydroxycinnamic acid degradation. Using an hcaR-deleted strain, we further revealed that hydroxycinnamic acid degradation interfere with virulence gene expression. The HcaR deletion mutant shows a contrasting competitive colonization ability, being less abundant than the wild-type strain in tumors but more abundant in the rhizosphere. This supports the view that A. fabrum C58 HcaR regulation through ferulic and p-coumaric acid perception is important for the transition between lifestyles.


Assuntos
Agrobacterium/fisiologia , Ácidos Cumáricos/metabolismo , Agrobacterium/genética , Proteínas de Bactérias , Ácidos Cumáricos/química , DNA , Extinção Biológica , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Estrutura Molecular , Ligação Proteica
13.
J Biol Chem ; 291(43): 22638-22649, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27609514

RESUMO

Agrobacterium tumefaciens pathogens genetically modify their host plants to drive the synthesis of opines in plant tumors. Opines are either sugar phosphodiesters or the products of condensed amino acids with ketoacids or sugars. They are Agrobacterium nutrients and imported into the bacterial cell via periplasmic-binding proteins (PBPs) and ABC-transporters. Mannopine, an opine from the mannityl-opine family, is synthesized from an intermediate named deoxy-fructosyl-glutamine (DFG), which is also an opine and abundant Amadori compound (a name used for any derivative of aminodeoxysugars) present in decaying plant materials. The PBP MotA is responsible for mannopine import in mannopine-assimilating agrobacteria. In the nopaline-opine type agrobacteria strain, SocA protein was proposed as a putative mannopine binding PBP, and AttC protein was annotated as a mannopine binding-like PBP. Structural data on mannityl-opine-PBP complexes is currently lacking. By combining affinity data with analysis of seven x-ray structures at high resolution, we investigated the molecular basis of MotA, SocA, and AttC interactions with mannopine and its DFG precursor. Our work demonstrates that AttC is not a mannopine-binding protein and reveals a specific binding pocket for DFG in SocA with an affinity in nanomolar range. Hence, mannopine would not be imported into nopaline-type agrobacteria strains. In contrast, MotA binds both mannopine and DFG. We thus defined one mannopine and two DFG binding signatures. Unlike mannopine-PBPs, selective DFG-PBPs are present in a wide diversity of bacteria, including Actinobacteria, α-,ß-, and γ-proteobacteria, revealing a common role of this Amadori compound in pathogenic, symbiotic, and opportunistic bacteria.


Assuntos
Agrobacterium tumefaciens/química , Proteínas de Bactérias/química , Proteínas de Transporte/química , Manitol/análogos & derivados , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Manitol/química , Manitol/metabolismo , Domínios Proteicos
14.
PLoS Pathog ; 11(8): e1005071, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26244338

RESUMO

Periplasmic binding proteins (PBPs) in association with ABC transporters select and import a wide variety of ligands into bacterial cytoplasm. They can also take up toxic molecules, as observed in the case of the phytopathogen Agrobacterium tumefaciens strain C58. This organism contains a PBP called AccA that mediates the import of the antibiotic agrocin 84, as well as the opine agrocinopine A that acts as both a nutrient and a signalling molecule for the dissemination of virulence genes through quorum-sensing. Here, we characterized the binding mode of AccA using purified agrocin 84 and synthetic agrocinopine A by X-ray crystallography at very high resolution and performed affinity measurements. Structural and affinity analyses revealed that AccA recognizes an uncommon and specific motif, a pyranose-2-phosphate moiety which is present in both imported molecules via the L-arabinopyranose moiety in agrocinopine A and the D-glucopyranose moiety in agrocin 84. We hypothesized that AccA is a gateway allowing the import of any compound possessing a pyranose-2-phosphate motif at one end. This was structurally and functionally confirmed by experiments using four synthetic compounds: agrocinopine 3'-O-benzoate, L-arabinose-2-isopropylphosphate, L-arabinose-2-phosphate and D-glucose-2-phosphate. By combining affinity measurements and in vivo assays, we demonstrated that both L-arabinose-2-phosphate and D-glucose-2-phosphate, which are the AccF mediated degradation products of agrocinopine A and agrocin 84 respectively, interact with the master transcriptional regulator AccR and activate the quorum-sensing signal synthesis and Ti plasmid transfer in A. tumefaciens C58. Our findings shed light on the role of agrocinopine and antibiotic agrocin 84 on quorum-sensing regulation in A. tumefaciens and reveal how the PBP AccA acts as vehicle for the importation of both molecules by means of a key-recognition motif. It also opens future possibilities for the rational design of antibiotic and anti-virulence compounds against A. tumefaciens or other pathogens possessing similar PBPs.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Agrobacterium tumefaciens/metabolismo , Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Percepção de Quorum/fisiologia , Fosfatos Açúcares/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Nucleotídeos de Adenina/química , Nucleotídeos de Adenina/metabolismo , Antibacterianos/química , Proteínas de Bactérias/química , Cristalografia por Raios X , Dados de Sequência Molecular , Conformação Proteica
15.
Biochem J ; 473(10): 1443-53, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27005432

RESUMO

Mesotrione is a selective herbicide belonging to the triketone family, commonly used on maize cultures since 2003. A mesotrione-transforming Bacillus megaterium Mes11 strain isolated from an agricultural soil was used as a model to identify the key enzymes initiating the biotransformation of this herbicide. Two enzymes (called NfrA1 and NfrA2/YcnD) were identified, and functionally and structurally characterized. Both belong to the NfsA FRP family of the nitro-FMN reductase superfamily (type I oxygen-insensitive nitroreductase) and show optimal pH and temperature of 6-6.5 and 23-25°C, respectively. Both undergo a Ping Pong Bi Bi mechanism, with NADPH and NADPH/NADH as cofactors for NfrA1 and NfrA2/YcnD, respectively. It is interesting that both can also reduce various nitro compounds including pesticides, antibiotics, one prodrug and 4-methylsulfonyl-2-nitrobenzoic acid, one of the mesotrione metabolites retrieved from the environment. The present study constitutes the first identification of mesotrione-transforming enzymes. These enzymes (or their corresponding genes) could be used as biomarkers to predict the capacity of ecosystems to transform mesotrione and assess their contamination by both the parent molecule and/or the metabolites.


Assuntos
Bacillus megaterium/enzimologia , Proteínas de Bactérias/metabolismo , Cicloexanonas/metabolismo , Herbicidas/metabolismo , Nitrorredutases/metabolismo , Concentração de Íons de Hidrogênio , Nitrocompostos/metabolismo , Temperatura
16.
PLoS Pathog ; 10(10): e1004444, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25299655

RESUMO

By modifying the nuclear genome of its host, the plant pathogen Agrobacterium tumefaciens induces the development of plant tumours in which it proliferates. The transformed plant tissues accumulate uncommon low molecular weight compounds called opines that are growth substrates for A. tumefaciens. In the pathogen-induced niche (the plant tumour), a selective advantage conferred by opine assimilation has been hypothesized, but not experimentally demonstrated. Here, using genetics and structural biology, we deciphered how the pathogen is able to bind opines and use them to efficiently compete in the plant tumour. We report high resolution X-ray structures of the periplasmic binding protein (PBP) NocT unliganded and liganded with the opine nopaline (a condensation product of arginine and α-ketoglurate) and its lactam derivative pyronopaline. NocT exhibited an affinity for pyronopaline (K(D) of 0.6 µM) greater than that for nopaline (KD of 3.7 µM). Although the binding-mode of the arginine part of nopaline/pyronopaline in NocT resembled that of arginine in other PBPs, affinity measurement by two different techniques showed that NocT did not bind arginine. In contrast, NocT presented specific residues such as M117 to stabilize the bound opines. NocT relatives that exhibit the nopaline/pyronopaline-binding mode were only found in genomes of the genus Agrobacterium. Transcriptomics and reverse genetics revealed that A. tumefaciens uses the same pathway for assimilating nopaline and pyronopaline. Fitness measurements showed that NocT is required for a competitive colonization of the plant tumour by A. tumefaciens. Moreover, even though the Ti-plasmid conjugal transfer was not regulated by nopaline, the competitive advantage gained by the nopaline-assimilating Ti-plasmid donors led to a preferential horizontal propagation of this Ti-plasmid amongst the agrobacteria colonizing the plant-tumour niche. This work provided structural and genetic evidences to support the niche construction paradigm in bacterial pathogens.


Assuntos
Agrobacterium tumefaciens/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Tumores de Planta/microbiologia , Agrobacterium tumefaciens/isolamento & purificação , Arginina/análogos & derivados , Arginina/química , Arginina/farmacologia , Proteínas de Bactérias/metabolismo , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica/genética , Genes Bacterianos/efeitos dos fármacos , Genes Bacterianos/genética , Ligantes , Plasmídeos/genética
17.
Biochem J ; 468(1): 109-23, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25734422

RESUMO

Aldehyde dehydrogenases (ALDHs) are responsible for oxidation of biogenic aldehyde intermediates as well as for cell detoxification of aldehydes generated during lipid peroxidation. So far, 13 ALDH families have been described in plants. In the present study, we provide a detailed biochemical characterization of plant ALDH2 and ALDH7 families by analysing maize and pea ALDH7 (ZmALDH7 and PsALDH7) and four maize cytosolic ALDH(cALDH)2 isoforms RF2C, RF2D, RF2E and RF2F [the first maize ALDH2 was discovered as a fertility restorer (RF2A)]. We report the crystal structures of ZmALDH7, RF2C and RF2F at high resolution. The ZmALDH7 structure shows that the three conserved residues Glu(120), Arg(300) and Thr(302) in the ALDH7 family are located in the substrate-binding site and are specific to this family. Our kinetic analysis demonstrates that α-aminoadipic semialdehyde, a lysine catabolism intermediate, is the preferred substrate for plant ALDH7. In contrast, aromatic aldehydes including benzaldehyde, anisaldehyde, cinnamaldehyde, coniferaldehyde and sinapaldehyde are the best substrates for cALDH2. In line with these results, the crystal structures of RF2C and RF2F reveal that their substrate-binding sites are similar and are formed by an aromatic cluster mainly composed of phenylalanine residues and several nonpolar residues. Gene expression studies indicate that the RF2C gene, which is strongly expressed in all organs, appears essential, suggesting that the crucial role of the enzyme would certainly be linked to the cell wall formation using aldehydes from phenylpropanoid pathway as substrates. Finally, plant ALDH7 may significantly contribute to osmoprotection because it oxidizes several aminoaldehydes leading to products known as osmolytes.


Assuntos
Aldeído Desidrogenase/química , Proteínas de Plantas/química , Plantas/enzimologia , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Sequência de Aminoácidos , Domínio Catalítico/genética , Cristalografia por Raios X , Perfilação da Expressão Gênica , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Modelos Genéticos , Modelos Moleculares , Dados de Sequência Molecular , NAD/metabolismo , Pisum sativum/enzimologia , Pisum sativum/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Especificidade por Substrato , Zea mays/enzimologia , Zea mays/genética
18.
Nucleic Acids Res ; 42(16): 10731-47, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25170085

RESUMO

Biogenesis of eukaryotic box C/D small nucleolar ribonucleoprotein particles (C/D snoRNPs) involves conserved trans-acting factors, which are proposed to facilitate the assembly of the core proteins Snu13p/15.5K, Nop58p/NOP58, Nop56p/NOP56 and Nop1p/Fibrillarin on box C/D small nucleolar RNAs (C/D snoRNAs). In yeast, protein Rsa1 acts as a platform, interacting with both the RNA-binding core protein Snu13 and protein Pih1 of the Hsp82-R2TP chaperone complex. In this work, a proteomic approach coupled with functional and structural studies identifies protein Hit1 as a novel Rsa1p-interacting partner involved in C/D snoRNP assembly. Hit1p contributes to in vivo C/D snoRNA stability and pre-RNA maturation kinetics. It associates with U3 snoRNA precursors and influences its 3'-end processing. Remarkably, Hit1p is required to maintain steady-state levels of Rsa1p. This stabilizing activity is likely to be general across eukaryotic species, as the human protein ZNHIT3(TRIP3) showing sequence homology with Hit1p regulates the abundance of NUFIP1, the Rsa1p functional homolog. The nuclear magnetic resonance solution structure of the Rsa1p317-352-Hit1p70-164 complex reveals a novel mode of protein-protein association explaining the strong stability of the Rsa1p-Hit1p complex. Our biochemical data show that C/D snoRNAs and the core protein Nop58 can interact with the purified Snu13p-Rsa1p-Hit1p heterotrimer.


Assuntos
RNA Nucleolar Pequeno/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Processamento de Terminações 3' de RNA , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleolares Pequenas/química , Ribonucleoproteínas Nucleolares Pequenas/genética , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
19.
Proc Natl Acad Sci U S A ; 110(33): E3071-80, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23898172

RESUMO

8,5'-cyclo-2'-deoxyadenosine (cdA) and 8,5'-cyclo-2'-deoxyguanosine generated in DNA by both endogenous oxidative stress and ionizing radiation are helix-distorting lesions and strong blocks for DNA replication and transcription. In duplex DNA, these lesions are repaired in the nucleotide excision repair (NER) pathway. However, lesions at DNA strand breaks are most likely poor substrates for NER. Here we report that the apurinic/apyrimidinic (AP) endonucleases--Escherichia coli Xth and human APE1--can remove 5'S cdA (S-cdA) at 3' termini of duplex DNA. In contrast, E. coli Nfo and yeast Apn1 are unable to carry out this reaction. None of these enzymes can remove S-cdA adduct located at 1 or more nt away from the 3' end. To understand the structural basis of 3' repair activity, we determined a high-resolution crystal structure of E. coli Nfo-H69A mutant bound to a duplex DNA containing an α-anomeric 2'-deoxyadenosine:T base pair. Surprisingly, the structure reveals a bound nucleotide incision repair (NIR) product with an abortive 3'-terminal dC close to the scissile position in the enzyme active site, providing insight into the mechanism for Nfo-catalyzed 3'→5' exonuclease function and its inhibition by 3'-terminal S-cdA residue. This structure was used as a template to model 3'-terminal residues in the APE1 active site and to explain biochemical data on APE1-catalyzed 3' repair activities. We propose that Xth and APE1 may act as a complementary repair pathway to NER to remove S-cdA adducts from 3' DNA termini in E. coli and human cells, respectively.


Assuntos
Adutos de DNA/metabolismo , Reparo do DNA/fisiologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Desoxirribonuclease IV (Fago T4-Induzido)/química , Proteínas de Escherichia coli/química , Exonucleases/metabolismo , Modelos Moleculares , Conformação Proteica , Adutos de DNA/química , Reparo do DNA/genética , Eletroforese em Gel de Gradiente Desnaturante , Desoxiadenosinas/química , Desoxiadenosinas/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/química , Desoxiguanosina/metabolismo , Escherichia coli , Humanos , Estrutura Molecular , Oligonucleotídeos/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Difração de Raios X , Leveduras
20.
J Biol Chem ; 288(13): 9491-507, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23408433

RESUMO

Plant ALDH10 family members are aminoaldehyde dehydrogenases (AMADHs), which oxidize ω-aminoaldehydes to the corresponding acids. They have been linked to polyamine catabolism, osmoprotection, secondary metabolism (fragrance), and carnitine biosynthesis. Plants commonly contain two AMADH isoenzymes. We previously studied the substrate specificity of two AMADH isoforms from peas (PsAMADHs). Here, two isoenzymes from tomato (Solanum lycopersicum), SlAMADHs, and three AMADHs from maize (Zea mays), ZmAMADHs, were kinetically investigated to obtain further clues to the catalytic mechanism and the substrate specificity. We also solved the high resolution crystal structures of SlAMADH1 and ZmAMADH1a because these enzymes stand out from the others regarding their activity. From the structural and kinetic analysis, we can state that five residues at positions 163, 288, 289, 444, and 454 (PsAMADHs numbering) can, directly or not, significantly modulate AMADH substrate specificity. In the SlAMADH1 structure, a PEG aldehyde derived from the precipitant forms a thiohemiacetal intermediate, never observed so far. Its absence in the SlAMADH1-E260A structure suggests that Glu-260 can activate the catalytic cysteine as a nucleophile. We show that the five AMADHs studied here are capable of oxidizing 3-dimethylsulfoniopropionaldehyde to the cryo- and osmoprotectant 3-dimethylsulfoniopropionate. For the first time, we also show that 3-acetamidopropionaldehyde, the third aminoaldehyde besides 3-aminopropionaldehyde and 4-aminobutyraldehyde, is generally oxidized by AMADHs, meaning that these enzymes are unique in metabolizing and detoxifying aldehyde products of polyamine degradation to nontoxic amino acids. Finally, gene expression profiles in maize indicate that AMADHs might be important for controlling ω-aminoaldehyde levels during early stages of the seed development.


Assuntos
Aldeído Oxirredutases/química , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Plantas/enzimologia , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Aldeídos/química , Cristalografia por Raios X/métodos , Cinética , Solanum lycopersicum/enzimologia , Modelos Químicos , Mutagênese Sítio-Dirigida , NAD/química , Filogenia , Fenômenos Fisiológicos Vegetais , Polietilenoglicóis/química , Ligação Proteica , Sementes/metabolismo , Especificidade por Substrato , Zea mays/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA