Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 23: 2141-2151, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38827235

RESUMO

Molecular docking is a widely used technique in drug discovery to predict the binding mode of a given ligand to its target. However, the identification of the near-native binding pose in docking experiments still represents a challenging task as the scoring functions currently employed by docking programs are parametrized to predict the binding affinity, and, therefore, they often fail to correctly identify the ligand native binding conformation. Selecting the correct binding mode is crucial to obtaining meaningful results and to conveniently optimizing new hit compounds. Deep learning (DL) algorithms have been an area of a growing interest in this sense for their capability to extract the relevant information directly from the protein-ligand structure. Our review aims to present the recent advances regarding the development of DL-based pose selection approaches, discussing limitations and possible future directions. Moreover, a comparison between the performances of some classical scoring functions and DL-based methods concerning their ability to select the correct binding mode is reported. In this regard, two novel DL-based pose selectors developed by us are presented.

2.
PLoS One ; 18(3): e0280987, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36888612

RESUMO

Our brain constantly combines sensory information in unitary percept to build coherent representations of the environment. Even though this process could appear smooth, integrating sensory inputs from various sensory modalities must overcome several computational issues, such as recoding and statistical inferences problems. Following these assumptions, we developed a neural architecture replicating humans' ability to use audiovisual spatial representations. We considered the well-known ventriloquist illusion as a benchmark to evaluate its phenomenological plausibility. Our model closely replicated human perceptual behavior, proving a truthful approximation of the brain's ability to develop audiovisual spatial representations. Considering its ability to model audiovisual performance in a spatial localization task, we release our model in conjunction with the dataset we recorded for its validation. We believe it will be a powerful tool to model and better understand multisensory integration processes in experimental and rehabilitation environments.


Assuntos
Ilusões , Percepção Visual , Humanos , Percepção Auditiva , Encéfalo , Simulação por Computador , Estimulação Acústica , Estimulação Luminosa
3.
IEEE Trans Image Process ; 31: 7102-7115, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36346862

RESUMO

Acoustic images are an emergent data modality for multimodal scene understanding. Such images have the peculiarity of distinguishing the spectral signature of the sound coming from different directions in space, thus providing a richer information as compared to that derived from single or binaural microphones. However, acoustic images are typically generated by cumbersome and costly microphone arrays which are not as widespread as ordinary microphones. This paper shows that it is still possible to generate acoustic images from off-the-shelf cameras equipped with only a single microphone and how they can be exploited for audio-visual scene understanding. We propose three architectures inspired by Variational Autoencoder, U-Net and adversarial models, and we assess their advantages and drawbacks. Such models are trained to generate spatialized audio by conditioning them to the associated video sequence and its corresponding monaural audio track. Our models are trained using the data collected by a microphone array as ground truth. Thus they learn to mimic the output of an array of microphones in the very same conditions. We assess the quality of the generated acoustic images considering standard generation metrics and different downstream tasks (classification, cross-modal retrieval and sound localization). We also evaluate our proposed models by considering multimodal datasets containing acoustic images, as well as datasets containing just monaural audio signals and RGB video frames. In all of the addressed downstream tasks we obtain notable performances using the generated acoustic data, when compared to the state of the art and to the results obtained using real acoustic images as input.


Assuntos
Acústica , Localização de Som
4.
Sci Rep ; 12(1): 19073, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36351956

RESUMO

In this paper, we investigate brain activity associated with complex visual tasks, showing that electroencephalography (EEG) data can help computer vision in reliably recognizing actions from video footage that is used to stimulate human observers. Notably, we consider not only typical "explicit" video action benchmarks, but also more complex data sequences in which action concepts are only referred to, implicitly. To this end, we consider a challenging action recognition benchmark dataset-Moments in Time-whose video sequences do not explicitly visualize actions, but only implicitly refer to them (e.g., fireworks in the sky as an extreme example of "flying"). We employ such videos as stimuli and involve a large sample of subjects to collect a high-definition, multi-modal EEG and video data, designed for understanding action concepts. We discover an agreement among brain activities of different subjects stimulated by the same video footage. We name it as subjects consensus, and we design a computational pipeline to transfer knowledge from EEG to video, sharply boosting the recognition performance.


Assuntos
Eletroencefalografia , Reconhecimento Psicológico , Humanos , Consenso , Encéfalo
5.
ACS Appl Mater Interfaces ; 14(22): 25898-25906, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35612325

RESUMO

Counterfeiting is a worldwide issue affecting many industrial sectors, ranging from specialized technologies to retail market, such as fashion brands, pharmaceutical products, and consumer electronics. Counterfeiting is not only a huge economic burden (>$ 1 trillion losses/year), but it also represents a serious risk to human health, for example, due to the exponential increase of fake drugs and food products invading the market. Considering such a global problem, numerous anticounterfeit technologies have been recently proposed, mostly based on tags. The most advanced category, based on encryption and cryptography, is represented by physically unclonable functions (PUFs). A PUF tag is based on a unique physical object generated through chemical methods with virtually endless possible combinations, providing remarkable encoding capability. However, most methods adopted nowadays are based on expensive and complex technologies, relying on instrumental readouts, which make them not effective in real-world applications. To achieve a simple yet cryptography-based anticounterfeit method, herein we exploit a combination of nanotechnology, chemistry, and artificial intelligence (AI). Notably, we developed platinum nanocatalyst-enabled visual tags, exhibiting the properties of PUFs (encoding capability >10300) along with fast (1 min) ON/OFF readout and full reversibility, enabling multiple onsite authentication cycles. The development of an accurate AI-aided algorithm powers the system, allowing for smartphone-based PUF authentications.


Assuntos
Inteligência Artificial , Medicamentos Falsificados , Algoritmos , Humanos , Nanotecnologia , Smartphone
6.
IEEE Trans Pattern Anal Mach Intell ; 42(10): 2581-2593, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31331879

RESUMO

Heterogeneous data modalities can provide complementary cues for several tasks, usually leading to more robust algorithms and better performance. However, while training data can be accurately collected to include a variety of sensory modalities, it is often the case that not all of them are available in real life (testing) scenarios, where a model has to be deployed. This raises the challenge of how to extract information from multimodal data in the training stage, in a form that can be exploited at test time, considering limitations such as noisy or missing modalities. This paper presents a new approach in this direction for RGB-D vision tasks, developed within the adversarial learning and privileged information frameworks. We consider the practical case of learning representations from depth and RGB videos, while relying only on RGB data at test time. We propose a new approach to train a hallucination network that learns to distill depth information via adversarial learning, resulting in a clean approach without several losses to balance or hyperparameters. We report state-of-the-art results for object classification on the NYUD dataset, and video action recognition on the largest multimodal dataset available for this task, the NTU RGB+D, as well as on the Northwestern-UCLA.

7.
IEEE Trans Image Process ; 25(6): 2697-2711, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27093628

RESUMO

Under a tracking framework, the definition of the target state is the basic step for automatic understanding of dynamic scenes. More specifically, far object tracking raises challenges related to the potentially abrupt size changes of the targets as they approach the sensor. If not handled, size changes can introduce heavy issues in data association and position estimation. This is why adaptability and self-awareness of a tracking module are desirable features. The paradigm of cognitive dynamic systems (CDSs) can provide a framework under which a continuously learning cognitive module can be designed. In particular, CDS theory describes a basic vocabulary of components that can be used as the founding blocks of a module capable to learn behavioral rules from continuous active interactions with the environment. This quality is the fundamental to deal with dynamic situations. In this paper we propose a general CDS-based approach to tracking. We show that such a CDS-inspired design can lead to the self-adaptability of a Bayesian tracker in fusing heterogeneous object features, overcoming size change issues. The experimental results on infrared sequences show how the proposed framework is able to outperform other existing far object tracking methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA