Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
PLoS Pathog ; 19(5): e1011323, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37134108

RESUMO

The severity of disease following infection with SARS-CoV-2 is determined by viral replication kinetics and host immunity, with early T cell responses and/or suppression of viraemia driving a favourable outcome. Recent studies uncovered a role for cholesterol metabolism in the SARS-CoV-2 life cycle and in T cell function. Here we show that blockade of the enzyme Acyl-CoA:cholesterol acyltransferase (ACAT) with Avasimibe inhibits SARS-CoV-2 pseudoparticle infection and disrupts the association of ACE2 and GM1 lipid rafts on the cell membrane, perturbing viral attachment. Imaging SARS-CoV-2 RNAs at the single cell level using a viral replicon model identifies the capacity of Avasimibe to limit the establishment of replication complexes required for RNA replication. Genetic studies to transiently silence or overexpress ACAT isoforms confirmed a role for ACAT in SARS-CoV-2 infection. Furthermore, Avasimibe boosts the expansion of functional SARS-CoV-2-specific T cells from the blood of patients sampled during the acute phase of infection. Thus, re-purposing of ACAT inhibitors provides a compelling therapeutic strategy for the treatment of COVID-19 to achieve both antiviral and immunomodulatory effects. Trial registration: NCT04318314.


Assuntos
Antivirais , COVID-19 , Humanos , Aciltransferases/antagonistas & inibidores , Antivirais/farmacologia , SARS-CoV-2 , Linfócitos T
2.
PLoS Pathog ; 14(5): e1007017, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29772011

RESUMO

There is increasing evidence that induction of local immune responses is a key component of effective vaccines. For respiratory pathogens, for example tuberculosis and influenza, aerosol delivery is being actively explored as a method to administer vaccine antigens. Current animal models used to study respiratory pathogens suffer from anatomical disparity with humans. The pig is a natural and important host of influenza viruses and is physiologically more comparable to humans than other animal models in terms of size, respiratory tract biology and volume. It may also be an important vector in the birds to human infection cycle. A major drawback of the current pig model is the inability to analyze antigen-specific CD8+ T-cell responses, which are critical to respiratory immunity. Here we address this knowledge gap using an established in-bred pig model with a high degree of genetic identity between individuals, including the MHC (Swine Leukocyte Antigen (SLA)) locus. We developed a toolset that included long-term in vitro pig T-cell culture and cloning and identification of novel immunodominant influenza-derived T-cell epitopes. We also generated structures of the two SLA class I molecules found in these animals presenting the immunodominant epitopes. These structures allowed definition of the primary anchor points for epitopes in the SLA binding groove and established SLA binding motifs that were used to successfully predict other influenza-derived peptide sequences capable of stimulating T-cells. Peptide-SLA tetramers were constructed and used to track influenza-specific T-cells ex vivo in blood, the lungs and draining lymph nodes. Aerosol immunization with attenuated single cycle influenza viruses (S-FLU) induced large numbers of CD8+ T-cells specific for conserved NP peptides in the respiratory tract. Collectively, these data substantially increase the utility of pigs as an effective model for studying protective local cellular immunity against respiratory pathogens.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vírus da Influenza A/imunologia , Vacinas contra Influenza/administração & dosagem , Sistema Respiratório/imunologia , Aerossóis , Sequência de Aminoácidos , Animais , Antígenos Virais/química , Epitopos/química , Epitopos/genética , Feminino , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Endogamia , Vírus da Influenza A/patogenicidade , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/transmissão , Masculino , Modelos Animais , Modelos Moleculares , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/veterinária , Sus scrofa/genética , Sus scrofa/imunologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/prevenção & controle , Vacinação/métodos , Vacinação/veterinária
3.
J Immunol ; 200(12): 4068-4077, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29703861

RESUMO

Influenza is a major health threat, and a broadly protective influenza vaccine would be a significant advance. Signal Minus FLU (S-FLU) is a candidate broadly protective influenza vaccine that is limited to a single cycle of replication, which induces a strong cross-reactive T cell response but a minimal Ab response to hemagglutinin after intranasal or aerosol administration. We tested whether an H3N2 S-FLU can protect pigs and ferrets from heterosubtypic H1N1 influenza challenge. Aerosol administration of S-FLU to pigs induced lung tissue-resident memory T cells and reduced lung pathology but not the viral load. In contrast, in ferrets, S-FLU reduced viral replication and aerosol transmission. Our data show that S-FLU has different protective efficacy in pigs and ferrets, and that in the absence of Ab, lung T cell immunity can reduce disease severity without reducing challenge viral replication.


Assuntos
Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/imunologia , Administração Intranasal , Animais , Anticorpos Antivirais/imunologia , Reações Cruzadas/imunologia , Furões , Hemaglutininas/imunologia , Humanos , Imunidade/imunologia , Memória Imunológica/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Suínos , Linfócitos T/imunologia , Vacinação/métodos , Replicação Viral/imunologia
4.
J Immunol ; 196(12): 5014-23, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27183611

RESUMO

Influenza A viruses are a major health threat to livestock and humans, causing considerable mortality, morbidity, and economic loss. Current inactivated influenza vaccines are strain specific and new vaccines need to be produced at frequent intervals to combat newly arising influenza virus strains, so that a universal vaccine is highly desirable. We show that pandemic H1N1 influenza virus in which the hemagglutinin signal sequence has been suppressed (S-FLU), when administered to pigs by aerosol can induce CD4 and CD8 T cell immune responses in blood, bronchoalveolar lavage (BAL), and tracheobronchial lymph nodes. Neutralizing Ab was not produced. Detection of a BAL response correlated with a reduction in viral titer in nasal swabs and lungs, following challenge with H1N1 pandemic virus. Intratracheal immunization with a higher dose of a heterologous H5N1 S-FLU vaccine induced weaker BAL and stronger tracheobronchial lymph node responses and a lesser reduction in viral titer. We conclude that local cellular immune responses are important for protection against influenza A virus infection, that these can be most efficiently induced by aerosol immunization targeting the lower respiratory tract, and that S-FLU is a promising universal influenza vaccine candidate.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Infecções por Orthomyxoviridae/prevenção & controle , Carga Viral , Aerossóis , Animais , Anticorpos Neutralizantes/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Imunidade Celular , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H1N1/patogenicidade , Virus da Influenza A Subtipo H5N1/imunologia , Influenza Humana/sangue , Influenza Humana/imunologia , Influenza Humana/virologia , Interferon gama/biossíntese , Interferon gama/imunologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Nariz/virologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Pandemias/prevenção & controle , Sus scrofa , Vacinação , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia
5.
Vet Res ; 47(1): 103, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27765064

RESUMO

Influenza virus infection in pigs is a major farming problem, causing considerable economic loss and posing a zoonotic threat. In addition the pig is an excellent model for understanding immunity to influenza viruses as this is a natural host pathogen system. Experimentally, influenza virus is delivered to pigs intra-nasally, by intra-tracheal instillation or by aerosol, but there is little data comparing the outcome of different methods. We evaluated the shedding pattern, cytokine responses in nasal swabs and immune responses following delivery of low or high dose swine influenza pdmH1N1 virus to the respiratory tract of pigs intra-nasally or by aerosol and compared them to those induced in naturally infected contact pigs. Our data shows that natural infection by contact induces remarkably high innate and adaptive immune response, although the animals were exposed to a very low virus dose. In contacts, the kinetics of virus shedding were slow and prolonged and more similar to the low dose directly infected animals. In contrast the cytokine profile in nasal swabs, antibody and cellular immune responses of contacts more closely resemble immune responses in high dose directly inoculated animals. Consideration of these differences is important for studies of disease pathogenesis and assessment of vaccine protective efficacy.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/veterinária , Doenças dos Suínos/virologia , Administração Intranasal , Aerossóis , Animais , Citocinas/metabolismo , Feminino , Citometria de Fluxo/veterinária , Exposição por Inalação , Pulmão/patologia , Cavidade Nasal/virologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/patologia , Eliminação de Partículas Virais
6.
Vet Res ; 46: 34, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25889072

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) induces a weak immune response enabling it to persist in different organs of infected pigs. This has been attributed to the ability of PRRSV to influence the induction of cytokine responses. In this study, we investigated the cytokine transcriptional profiles in different compartments of the mediastinal lymph node of pigs infected with three genotype 1 PRRSV strains of differing pathogenicity: the low virulence prototype Lelystad virus (LV), and UK field strain 215-06 and the highly virulent subtype 3 SU1-Bel isolate from Belarus. We have used a combination of laser capture micro-dissection (LCM) followed by real time quantitative PCR (RT-qPCR) and immunohistochemical (IHC) detection of immune cell markers (CD3, CD79a and MAC387) and RT-qPCR quantification of PRRSV and cytokine transcripts. Compared to mock infected pigs, we found a significant downregulation of TNF-α and IFN-α in follicular and interfollicular areas of the mediastinal lymph node from 3 days post-infection (dpi) in animals infected with all three strains. This was accompanied by a transient B cell depletion and T cell and macrophage infiltration in the follicles together with T cell depletion in the interfollicular areas. A delayed upregulation of IFN-γ and IL-23p19 was observed mainly in the follicles. The PRRSV load was higher in all areas and time-points studied in the animals infected with the SU1-Bel strain. This paper describes the first application of LCM to study the cytokine transcript profiles and virus distribution in different compartments of the lymph node of pigs.


Assuntos
Citocinas/genética , Linfonodos/virologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Transcriptoma , Animais , Citocinas/metabolismo , Mediastino/virologia , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/virologia , RNA Viral/genética , RNA Viral/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Suínos , Virulência
7.
Front Cell Infect Microbiol ; 13: 1141798, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180449

RESUMO

Type-2 low asthma affects 30-50% of people with severe asthma and includes a phenotype characterized by sputum neutrophilia and resistance to corticosteroids. Airways inflammation in type-2 low asthma or COPD is potentially driven by persistent bacterial colonization of the lower airways by bacteria such as non-encapsulated Haemophilus influenzae (NTHi). Although pathogenic in the lower airways, NTHi is a commensal of the upper airways. It is not known to what extent these strains can invade airway epithelial cells, persist intracellularly and activate epithelial cell production of proinflammatory cytokines, and how this differs between the upper and lower airways. We studied NTHi infection of primary human bronchial epithelial cells (PBECs), primary nasal epithelial cells (NECs) and epithelial cell lines from upper and lower airways. NTHi strains differed in propensity for intracellular and paracellular invasion. We found NTHi was internalized within PBECs at 6 h, but live intracellular infection did not persist at 24 h. Confocal microscopy and flow cytometry showed NTHi infected secretory, ciliated and basal PBECs. Infection of PBECs led to induction of CXCL8, interleukin (IL)-1ß, IL-6 and TNF. The magnitude of cytokine induction was independent of the degree of intracellular invasion, either by differing strains or by cytochalasin D inhibition of endocytosis, with the exception of the inflammasome-induced mediator IL-1ß. NTHi-induced activation of TLR2/4, NOD1/2 and NLR inflammasome pathways was significantly stronger in NECs than in PBECs. These data suggest that NTHi is internalized transiently by airway epithelial cells and has capacity to drive inflammation in airway epithelial cells.


Assuntos
Asma , Infecções por Haemophilus , Doença Pulmonar Obstrutiva Crônica , Humanos , Haemophilus influenzae , Doença Pulmonar Obstrutiva Crônica/patologia , Inflamassomos , Infecções por Haemophilus/microbiologia , Citocinas , Inflamação , Células Epiteliais/microbiologia
8.
Science ; 371(6528): 521-526, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33510029

RESUMO

Mucosal-associated invariant T (MAIT) cells are innate sensors of viruses and can augment early immune responses and contribute to protection. We hypothesized that MAIT cells may have inherent adjuvant activity in vaccine platforms that use replication-incompetent adenovirus vectors. In mice and humans, ChAdOx1 (chimpanzee adenovirus Ox1) immunization robustly activated MAIT cells. Activation required plasmacytoid dendritic cell (pDC)-derived interferon (IFN)-α and monocyte-derived interleukin-18. IFN-α-induced, monocyte-derived tumor necrosis factor was also identified as a key secondary signal. All three cytokines were required in vitro and in vivo. Activation of MAIT cells positively correlated with vaccine-induced T cell responses in human volunteers and MAIT cell-deficient mice displayed impaired CD8+ T cell responses to multiple vaccine-encoded antigens. Thus, MAIT cells contribute to the immunogenicity of adenovirus vectors, with implications for vaccine design.


Assuntos
Adenoviridae/imunologia , Imunogenicidade da Vacina , Células T Invariantes Associadas à Mucosa/imunologia , Vacinas Virais/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Vetores Genéticos/imunologia , Humanos , Interferon-alfa/metabolismo , Interleucina-18/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/metabolismo
9.
iScience ; 24(10): 103144, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34545347

RESUMO

The coronavirus disease 2019 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronavirus, is a global health issue with unprecedented challenges for public health. SARS-CoV-2 primarily infects cells of the respiratory tract via spike glycoprotein binding to angiotensin-converting enzyme (ACE2). Circadian rhythms coordinate an organism's response to its environment and can regulate host susceptibility to virus infection. We demonstrate that silencing the circadian regulator Bmal1 or treating lung epithelial cells with the REV-ERB agonist SR9009 reduces ACE2 expression and inhibits SARS-CoV-2 entry and replication. Importantly, treating infected cells with SR9009 limits SARS-CoV-2 replication and secretion of infectious particles, showing that post-entry steps in the viral life cycle are influenced by the circadian system. Transcriptome analysis revealed that Bmal1 silencing induced interferon-stimulated gene transcripts in Calu-3 lung epithelial cells, providing a mechanism for the circadian pathway to limit SARS-CoV-2 infection. Our study highlights alternative approaches to understand and improve therapeutic targeting of SARS-CoV-2.

10.
bioRxiv ; 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-33758862

RESUMO

The COVID-19 pandemic, caused by SARS-CoV-2 coronavirus, is a global health issue with unprecedented challenges for public health. SARS-CoV-2 primarily infects cells of the respiratory tract, via Spike glycoprotein binding angiotensin-converting enzyme (ACE2). Circadian rhythms coordinate an organism’s response to its environment and can regulate host susceptibility to virus infection. We demonstrate a circadian regulation of ACE2 in lung epithelial cells and show that silencing BMAL1 or treatment with a synthetic REV-ERB agonist SR9009 reduces ACE2 expression and inhibits SARS-CoV-2 entry. Treating infected cells with SR9009 limits viral replication and secretion of infectious particles, showing that post-entry steps in the viral life cycle are influenced by the circadian system. Transcriptome analysis revealed that Bmal1 silencing induced a wide spectrum of interferon stimulated genes in Calu-3 lung epithelial cells, providing a mechanism for the circadian pathway to dampen SARS-CoV-2 infection. Our study suggests new approaches to understand and improve therapeutic targeting of SARS-CoV-2.

11.
Cell Rep ; 35(3): 109020, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33852916

RESUMO

COVID-19, caused by the novel coronavirus SARS-CoV-2, is a global health issue with more than 2 million fatalities to date. Viral replication is shaped by the cellular microenvironment, and one important factor to consider is oxygen tension, in which hypoxia inducible factor (HIF) regulates transcriptional responses to hypoxia. SARS-CoV-2 primarily infects cells of the respiratory tract, entering via its spike glycoprotein binding to angiotensin-converting enzyme 2 (ACE2). We demonstrate that hypoxia and the HIF prolyl hydroxylase inhibitor Roxadustat reduce ACE2 expression and inhibit SARS-CoV-2 entry and replication in lung epithelial cells via an HIF-1α-dependent pathway. Hypoxia and Roxadustat inhibit SARS-CoV-2 RNA replication, showing that post-entry steps in the viral life cycle are oxygen sensitive. This study highlights the importance of HIF signaling in regulating multiple aspects of SARS-CoV-2 infection and raises the potential use of HIF prolyl hydroxylase inhibitors in the prevention or treatment of COVID-19.


Assuntos
COVID-19/metabolismo , Células Epiteliais/metabolismo , Glicina/análogos & derivados , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isoquinolinas/farmacologia , Pulmão/metabolismo , SARS-CoV-2/fisiologia , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Células A549 , Animais , COVID-19/patologia , Células CACO-2 , Hipóxia Celular/efeitos dos fármacos , Chlorocebus aethiops , Células Epiteliais/virologia , Glicina/farmacologia , Humanos , Pulmão/virologia , Camundongos , Células Vero , Tratamento Farmacológico da COVID-19
12.
Front Immunol ; 10: 2625, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31787986

RESUMO

Influenza A virus infection is a global health threat to livestock and humans, causing substantial mortality and morbidity. As both pigs and humans are readily infected with influenza viruses of similar subtype, the pig is a robust and appropriate model for investigating swine and human disease. We evaluated the efficacy of the human cold-adapted 2017-2018 quadrivalent seasonal LAIV in pigs against H1N1pdm09 challenge. LAIV immunized animals showed significantly reduced viral load in nasal swabs. There was limited replication of the H1N1 component of the vaccine in the nose, a limited response to H1N1 in the lung lymph nodes and a low H1N1 serum neutralizing titer. In contrast there was better replication of the H3N2 component of the LAIV, accompanied by a stronger response to H3N2 in the tracheobronchial lymph nodes (TBLN). Our data demonstrates that a single administration of human quadrivalent LAIV shows limited replication in the nose and induces detectable responses to the H1N1 and H3N2 components. These data suggest that pigs may be a useful model for assessing LAIV against influenza A viruses.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vacinas contra Influenza , Infecções por Orthomyxoviridae/prevenção & controle , Vacinas Atenuadas , Administração Intranasal , Animais , Anticorpos Neutralizantes/sangue , Temperatura Baixa , Citocinas/imunologia , Feminino , Células HEK293 , Humanos , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Linfonodos/imunologia , Linfonodos/virologia , Nariz/virologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Estações do Ano , Suínos
13.
Front Immunol ; 10: 1318, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275307

RESUMO

African swine fever (ASF) is a lethal haemorrhagic disease of domestic pigs for which there is no vaccine. Strains of the virus with reduced virulence can provide protection against related virulent strains of ASFV, but protection is not 100% and there are concerns about the safety profile of such viruses. However, they provide a useful tool for understanding the immune response to ASFV and previous studies using the low virulent isolate OUR T88/3 have shown that CD8+ cells are crucial for protection. In order to develop a vaccine that stimulates an effective anti-ASFV T-cell response we need to know which of the >150 viral proteins are recognized by the cellular immune response. Therefore, we used a gamma interferon ELIspot assay to screen for viral proteins recognized by lymphocytes from ASF-immune pigs using peptides corresponding to 133 proteins predicted to be encoded by OUR T88/3. Eighteen antigens that were recognized by ASFV-specific lymphocytes were then incorporated into adenovirus and MVA vectors, which were used in immunization and challenge experiments in pigs. We present a systematic characterization of the cellular immune response to this devastating disease and identify proteins capable of inducing ASFV-specific cellular and humoral immune responses in pigs. Pools of viral vectors expressing these genes did not protect animals from severe disease, but did reduce viremia in a proportion of pigs following ASFV challenge.


Assuntos
Vírus da Febre Suína Africana/imunologia , Febre Suína Africana/imunologia , Antígenos Virais/imunologia , Proteínas Virais/imunologia , Adenoviridae/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Vetores Genéticos/imunologia , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Imunização/métodos , Suínos , Vacinação/métodos , Vacinas Virais/imunologia , Viremia/imunologia , Virulência/imunologia
14.
Front Immunol ; 9: 865, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29740451

RESUMO

Influenza virus infection is a significant global health threat. Because of the lack of cross-protective universal vaccines, short time window during which antivirals are effective and drug resistance, new therapeutic anti-influenza strategies are required. Broadly, cross-protective antibodies that target conserved sites in the hemagglutinin (HA) stem region have been proposed as therapeutic agents. FI6 is the first proven such monoclonal antibody to bind to H1-H16 and is protective in mice and ferrets. Multiple studies have shown that Fc-dependent mechanisms are essential for FI6 in vivo efficacy. Here, we show that therapeutic administration of FI6 either intravenously or by aerosol to pigs did not reduce viral load in nasal swabs or broncho-alveolar lavage, but aerosol delivery of FI6 reduced gross pathology significantly. We demonstrate that pig Fc receptors do not bind human IgG1 and that FI6 did not mediate antibody-dependent cytotoxicity (ADCC) with pig PBMC, confirming that ADCC is an important mechanism of protection by anti-stem antibodies in vivo. Enhanced respiratory disease, which has been associated with pigs with cross-reactive non-neutralizing anti-HA antibodies, did not occur after FI6 administration. Our results also show that in vitro neutralizing antibody responses are not a robust correlate of protection for the control of influenza infection and pathology in a natural host model.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/uso terapêutico , Vacinas contra Influenza/uso terapêutico , Influenza Humana/prevenção & controle , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Proteção Cruzada/imunologia , Reações Cruzadas/imunologia , Modelos Animais de Doenças , Cães , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Imunogenicidade da Vacina , Imunoglobulina G/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/virologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Células Madin Darby de Rim Canino/patologia , Receptores Fc/imunologia , Especificidade da Espécie , Sus scrofa
15.
Virus Res ; 202: 135-43, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25559070

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is a major disease affecting pigs worldwide and resulting in considerable economic losses. While PRRS is a global phenomenon, the causative viruses PRRSV-1 (first detected in Europe) and PRRSV-2 (isolated in North America) are genetically and biologically distinct. In addition, the disease outcome is directly linked to co-infections associated with the porcine respiratory disease complex and the host response is variable between different breeds of pigs. It is therefore warranted when studying the pathogenesis of PRRS to consider each viral genotype separately and apply careful consideration to the disease model studied. We here review the respiratory pig model for PRRSV-1, with a focus on a recent set of studies conducted with carefully selected virus strains and pigs, which may serve as both a baseline and benchmark for future investigation.


Assuntos
Interações Hospedeiro-Patógeno , Síndrome Respiratória e Reprodutiva Suína/patologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Animais , Modelos Animais de Doenças , Europa (Continente) , América do Norte , Vírus da Síndrome Respiratória e Reprodutiva Suína/classificação , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/isolamento & purificação , Suínos , Doenças dos Suínos/virologia
16.
Vet Immunol Immunopathol ; 164(3-4): 137-47, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25739319

RESUMO

Porcine reproductive and respiratory syndrome viruses (PRRSV) show high genetic differences both among and within genotypes. Recently, several highly pathogenic PRRSV (HP-PRRSV) strains have been described. This study compares and characterizes the production of cytokines by pulmonary macrophages in pigs experimentally infected with four different PRRSV-1 strains: two low-virulent strains, Lelystad (LV) and a British field strain (215-06); a HP strain (SU1-bel) from Belarus and the attenuated vaccine strain DV (Porcilis(®) PRRS). Animals were clinically monitored and post-mortem examinations were performed at 3, 7 and 35 days post-infection (dpi). Lung samples were processed for histopathological and immunohistochemical studies by using specific antibodies against PRRSV, IL1-α, IL-6, TNF-α, IL-10 and IFN-γ. SU1-bel infected animals presented the highest mean scores for clinical observations, gross and microscopic lesions as well as for PRRSV expression compared with the other infected groups (p≤0.027). These animals displayed the highest expression of IL1-α at 7dpi, together with the highest score for lung pathology, whereas LV, 215-06 and DV inoculated animals only showed a transient enhancement in some of these cytokines. SU1-bel-infected pigs showed a positive correlation between the amount of PRRSV antigen and IL-1α expression (r=0.645, p<0.001). The highest expression of IL-10 was detected in 215-06-infected animals (p≤0.004), with a positive correlation with the numbers of virus-infected cells (r=0.375, p≤0.013). In conclusion, the HP-PRRSV SU1-bel strain replicated more efficiently in the lung of infected animals and induced a higher expression of IL-1α than the other PRRSV-1-infected groups, which may have played a key role in the onset of the clinical signs and interstitial pneumonia.


Assuntos
Citocinas/biossíntese , Interleucina-1alfa/biossíntese , Pulmão/imunologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Animais , Antígenos Virais/sangue , Pulmão/patologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Suínos , Regulação para Cima
17.
Vaccine ; 32(50): 6828-37, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24844151

RESUMO

The porcine reproductive and respiratory syndrome virus (PRRSV) is a rapidly evolving and diversifying pathogen necessitating the development of improved vaccines. Immunity to PRRSV is not well understood although there are data suggesting that virus-specific T cell IFN-γ responses play an important role. We therefore aimed to better characterise the T cell response to genotype 1 (European) PRRSV by utilising a synthetic peptide library spanning the entire proteome and a small cohort of pigs rendered immune to PRRSV-1 Olot/91 by repeated experimental infection. Using an IFN-γ ELISpot assay as a read-out, we were able to identify 9 antigenic regions on 5 of the viral proteins and determine the corresponding responder T cell phenotype. The diversity of the IFN-γ response to PRRSV proteins suggests that antigenic regions are scattered throughout the proteome and no one single antigen dominates the T cell response. To address the identification of well-conserved T cell antigens, we subsequently screened groups of pigs infected with a closely related avirulent PRRSV-1 strain (Lelystad) and a divergent virulent subtype 3 strain (SU1-Bel). Whilst T cell responses from both groups were observed against many of the antigens identified in the first study, animals infected with the SU1-Bel strain showed the greatest response against peptides representing the non-structural protein 5. The proteome-wide peptide library screening method used here, as well as the antigens identified, warrant further evaluation in the context of next generation vaccine development.


Assuntos
Antígenos Virais/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Proteoma/imunologia , Linfócitos T/imunologia , Proteínas Virais/imunologia , Animais , ELISPOT , Interferon gama/metabolismo , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA