Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(15): 8437-8448, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32241895

RESUMO

Novel classes of antibiotics and new strategies to prevent and treat infections are urgently needed because the rapid rise in drug-resistant bacterial infections in recent decades has been accompanied by a parallel decline in development of new antibiotics. Membrane permeabilizing antimicrobial peptides (AMPs) have long been considered a potentially promising, novel class of antibiotic, especially for wound protection and treatment to prevent the development of serious infections. Yet, despite thousands of known examples, AMPs have only infrequently proceeded as far as clinical trials, especially the chemically simple, linear examples. In part, this is due to impediments that often limit their applications in vivo. These can include low solubility, residual toxicity, susceptibility to proteolysis, and loss of activity due to host cell, tissue, and protein binding. Here we show how synthetic molecular evolution can be used to evolve potentially advantageous antimicrobial peptides that lack these impediments from parent peptides that have at least some of them. As an example of how the antibiotic discovery pipeline can be populated with more promising candidates, we evolved and optimized one family of linear AMPs into a new generation with high solubility, low cytotoxicity, potent broad-spectrum sterilizing activity against a panel of gram-positive and gram-negative ESKAPE pathogens, and antibiofilm activity against gram-positive and gram-negative biofilms. The evolved peptides have these activities in vitro even in the presence of concentrated host cells and also in vivo in the complex, cell- and protein-rich environment of a purulent animal wound model infected with drug-resistant bacteria.


Assuntos
Antibacterianos/administração & dosagem , Antibacterianos/síntese química , Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Peptídeos Catiônicos Antimicrobianos/síntese química , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana , Animais , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Bactérias/genética , Infecções Bacterianas/microbiologia , Evolução Molecular Direcionada , Feminino , Humanos , Camundongos , Testes de Sensibilidade Microbiana
2.
J Membr Biol ; 255(4-5): 503-511, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35435452

RESUMO

Gram-negative bacteria belonging to the genus Burkholderia are remarkably resistant to broad-spectrum, cationic, antimicrobial peptides (AMPs). It has been proposed that this innate resistance is related to changes in the outer membrane lipopolysaccharide (OM LPS), including the constitutive, essential modification of outer membrane Lipid A phosphate groups with cationic 4-amino-4-deoxy-arabinose. This modification reduces the overall negative charge on the OM LPS which may change the OM structure and reduce the binding, accumulation, and permeation of cationic AMPs. Similarly, the Gram-negative pathogen Pseudomonas aeruginosa can quickly become resistant to many AMPs by multiple mechanisms, frequently, including activation of the arn operon, which leads, transiently, to the same modification of Lipid A. We recently discovered a set of synthetically evolved AMPs that do not invoke any resistance in P. aeruginosa over multiple passages and thus are apparently not inhibited by aminorabinosylation of Lipid A in P. aeruginosa. Here we test these resistance-avoiding peptides, within a set of 18 potent AMPs, against Burkholderia thailandensis. We find that none of the AMPs tested have measurable activity against B. thailandensis. Some were inactive at concentrations as high as 150 µM, despite all having sterilizing activity at ≤ 10 µM against a panel of common, human bacterial pathogens, including P. aeruginosa. We speculate that the constitutive modification of Lipid A in members of the Burkholderia genus is only part of a broader set of modifications that change the architecture of the OM to provide such remarkable levels of resistance to cationic AMPs.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Burkholderia , Humanos , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Antimicrobianos , Burkholderia/metabolismo , Lipídeo A , Lipopolissacarídeos/farmacologia , Lipídeos de Membrana , Fosfatos , Pseudomonas aeruginosa/metabolismo
3.
BMC Microbiol ; 21(1): 234, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429066

RESUMO

BACKGROUND: Biofilms are microbial communities surrounded by a self-produced extracellular matrix which protects them from environmental stress. Bacteria within biofilms are 10- to 1000-fold more resistant to antibiotics, making it challenging but imperative to develop new therapeutics that can disperse biofilms and eradicate infection. Gram-negative bacteria produce outer membrane vesicles (OMV) that play critical roles in communication, genetic exchange, cargo delivery, and pathogenesis. We have previously shown that OMVs derived from Burkholderia thailandensis inhibit the growth of drug-sensitive and drug-resistant bacteria and fungi. RESULTS: Here, we examine the antibiofilm activity of Burkholderia thailandensis OMVs against the oral biofilm-forming pathogen Streptococcus mutans. We demonstrate that OMV treatment reduces biofilm biomass, biofilm integrity, and bacterial cell viability. Both heat-labile and heat-stable components, including 4-hydroxy-3-methyl-2-(2-non-enyl)-quinoline and long-chain rhamnolipid, contribute to the antibiofilm activity of OMVs. When OMVs are co-administered with gentamicin, the efficacy of the antibiotic against S. mutans biofilms is enhanced. CONCLUSION: These studies indicate that bacterial-derived OMVs are highly effective biological nanoparticles that can inhibit and potentially eradicate biofilms.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Vesículas Extracelulares/química , Streptococcus mutans/fisiologia , Membrana Externa Bacteriana/química , Gentamicinas/farmacologia , Testes de Sensibilidade Microbiana , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/patogenicidade
4.
Infect Immun ; 88(8)2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32393507

RESUMO

The intracellular bacterial pathogen Salmonella is able to evade the immune system and persist within the host. In some cases, these persistent infections are asymptomatic for long periods and represent a significant public health hazard because the hosts are potential chronic carriers, yet the mechanisms that control persistence are incompletely understood. Using a mouse model of chronic typhoid fever combined with major histocompatibility complex (MHC) class II tetramers to interrogate endogenous, Salmonella-specific CD4+ helper T cells, we show that certain host microenvironments may favorably contribute to a pathogen's ability to persist in vivo We demonstrate that the environment in the hepatobiliary system may contribute to the persistence of Salmonella enterica subsp. enterica serovar Typhimurium through liver-resident immunoregulatory CD4+ helper T cells, alternatively activated macrophages, and impaired bactericidal activity. This contrasts with lymphoid organs, such as the spleen and mesenteric lymph nodes, where these same cells appear to have a greater capacity for bacterial killing, which may contribute to control of bacteria in these organs. We also found that, following an extended period of infection of more than 2 years, the liver appeared to be the only site that harbored Salmonella bacteria. This work establishes a potential role for nonlymphoid organ immunity in regulating chronic bacterial infections and provides further evidence for the hepatobiliary system as the site of chronic Salmonella infection.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Fígado/imunologia , Salmonelose Animal/imunologia , Salmonella typhimurium/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Doença Crônica , Técnicas de Cocultura , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/imunologia , Vesícula Biliar/imunologia , Vesícula Biliar/microbiologia , Regulação da Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno/genética , Imunidade Inata , Interferon gama/genética , Interferon gama/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Fígado/microbiologia , Linfonodos/imunologia , Linfonodos/microbiologia , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Células RAW 264.7 , Salmonelose Animal/genética , Salmonelose Animal/microbiologia , Salmonelose Animal/patologia , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/patogenicidade , Análise de Célula Única , Baço/imunologia , Baço/microbiologia , Linfócitos T Auxiliares-Indutores/microbiologia
5.
PLoS Pathog ; 10(11): e1004437, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25412476

RESUMO

The high level of accuracy and sensitivity of next generation sequencing for quantifying genetic material across organismal boundaries gives it tremendous potential for pathogen discovery and diagnosis in human disease. Despite this promise, substantial bacterial contamination is routinely found in existing human-derived RNA-seq datasets that likely arises from environmental sources. This raises the need for stringent sequencing and analysis protocols for studies investigating sequence-based microbial signatures in clinical samples.


Assuntos
Bases de Dados de Ácidos Nucleicos , Contaminação de Equipamentos , Sequenciamento de Nucleotídeos em Larga Escala , Infecções/diagnóstico , Infecções/genética , Humanos
6.
Emerg Infect Dis ; 21(6)2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25992835

RESUMO

Several candidates for a vaccine against Burkholderia pseudomallei, the causal bacterium of melioidosis, have been developed, and a rational approach is now needed to select and advance candidates for testing in relevant nonhuman primate models and in human clinical trials. Development of such a vaccine was the topic of a meeting in the United Kingdom in March 2014 attended by international candidate vaccine developers, researchers, and government health officials. The focus of the meeting was advancement of vaccines for prevention of natural infection, rather than for protection from the organism's known potential for use as a biological weapon. A direct comparison of candidate vaccines in well-characterized mouse models was proposed. Knowledge gaps requiring further research were identified. Recommendations were made to accelerate the development of an effective vaccine against melioidosis.


Assuntos
Vacinas Bacterianas/imunologia , Burkholderia pseudomallei/imunologia , Melioidose/prevenção & controle , Animais , Vacinas Bacterianas/economia , Financiamento de Capital , Modelos Animais de Doenças , Humanos , Melioidose/microbiologia , Melioidose/mortalidade , Camundongos
7.
Infect Immun ; 82(6): 2424-33, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24686055

RESUMO

Salmonella infections affect millions worldwide and remain a significant cause of morbidity and mortality. It is known from mouse studies that CD4 T cells are essential mediators of immunity against Salmonella infection, yet it is not clear whether targeting CD4 T cell responses directly with peptide vaccines against Salmonella can be effective in combating infection. Additionally, it is not known whether T cell responses elicited against Salmonella secreted effector proteins can provide protective immunity against infection. In this study, we investigated both of these possibilities using prime-boost immunization of susceptible mice with a single CD4 T cell peptide epitope from Salmonella secreted effector protein I (SseI), a component of the Salmonella type III secretion system. This immunization conferred significant protection against lethal oral infection, equivalent to that conferred by whole heat-killed Salmonella bacteria. Surprisingly, a well-characterized T cell epitope from the flagellar protein FliC afforded no protection compared to immunization with an irrelevant control peptide. The protective response appeared to be most associated with polyfunctional CD4 T cells raised against the SseI peptide, since no antibodies were produced against any of the peptides and very little CD8 T cell response was observed. Overall, this study demonstrates that eliciting CD4 T cell responses against components of the Salmonella type III secretion system can contribute to protection against infection and should be considered in the design of future Salmonella subunit vaccines.


Assuntos
Sistemas de Secreção Bacterianos/imunologia , Linfócitos T CD4-Positivos/imunologia , Infecções por Salmonella/prevenção & controle , Salmonella typhimurium/imunologia , Vacinação/métodos , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Epitopos de Linfócito T/imunologia , Camundongos , Camundongos Endogâmicos C57BL
8.
Mediators Inflamm ; 2013: 102457, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23766556

RESUMO

Chlamydia trachomatis, the agent of bacterial sexually transmitted infections, can manifest itself as either acute cervicitis, pelvic inflammatory disease, or a chronic asymptomatic infection. Inflammation induced by C. trachomatis contributes greatly to the pathogenesis of disease. Here we evaluated the anti-inflammatory capacity of naringenin, a polyphenolic compound, to modulate inflammatory mediators produced by mouse J774 macrophages infected with live C. trachomatis. Infected macrophages produced a broad spectrum of inflammatory cytokines (GM-CSF, TNF, IL-1ß, IL-1α, IL-6, IL-12p70, and IL-10) and chemokines (CCL4, CCL5, CXCL1, CXCL5, and CXCL10) which were downregulated by naringenin in a dose-dependent manner. Enhanced protein and mRNA gene transcript expressions of TLR2 and TLR4 in addition to the CD86 costimulatory molecule on infected macrophages were modulated by naringenin. Pathway-specific inhibition studies disclosed that p38 mitogen-activated-protein kinase (MAPK) is involved in the production of inflammatory mediators by infected macrophages. Notably, naringenin inhibited the ability of C. trachomatis to phosphorylate p38 in macrophages, suggesting a potential mechanism of its attenuation of concomitantly produced inflammatory mediators. Our data demonstrates that naringenin is an immunomodulator of inflammation triggered by C. trachomatis, which possibly may be mediated upstream by modulation of TLR2, TLR4, and CD86 receptors on infected macrophages and downstream via the p38 MAPK pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Infecções por Chlamydia/imunologia , Chlamydia trachomatis/patogenicidade , Flavanonas/farmacologia , Fatores Imunológicos/farmacologia , Macrófagos/metabolismo , Animais , Linhagem Celular , Chlamydia trachomatis/imunologia , Citometria de Fluxo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interleucina-10/metabolismo , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Fosforilação/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
ACS Synth Biol ; 12(8): 2418-2431, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37548960

RESUMO

Phage therapy to treat life-threatening drug-resistant infections has been hampered by technical challenges in phage production. Cell-free bacteriophage synthesis (CFBS) can overcome the limitations of standard phage production methods by manufacturing phage virions in vitro. CFBS mimics intracellular phage assembly using transcription/translation machinery (TXTL) harvested from bacterial lysates and combined with reagents to synthesize proteins encoded by a phage genomic DNA template. These systems may enable rapid phage production and engineering to accelerate phages from bench-to-bedside. TXTL harvested from wild type or commonly used bacterial strains was not optimized for bacteriophage production. Here, we demonstrate that TXTL from genetically modified E. coli BL21 can be used to enhance phage T7 yields in vitro by CFBS. Expression of 18 E. coli BL21 genes was manipulated by inducible CRISPR interference (CRISPRi) mediated by nuclease deficient Cas12a from F. novicida (dFnCas12a) to identify genes implicated in T7 propagation as positive or negative effectors. Genes shown to have a significant effect were overexpressed (positive effectors) or repressed (negative effectors) to modify the genetic background of TXTL harvested for CFBS. Phage T7 CFBS yields were improved by up to 10-fold in vitro through overexpression of translation initiation factor IF-3 (infC) and small RNAs OxyS and CyaR and by repression of RecC subunit exonuclease RecBCD. Continued improvement of CFBS will mitigate phage manufacturing bottlenecks and lower hurdles to widespread adoption of phage therapy.


Assuntos
Bacteriófagos , Bacteriófagos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Bacteriófago T7/genética , Replicação do DNA
10.
Vaccine Insights ; 2(6): 229-236, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37881504

RESUMO

The SARS-CoV-2 pandemic has highlighted the need for improved vaccines that can elicit long-lasting mucosal immunity. Although mucosal delivery of vaccines represents a plausible method to enhance mucosal immunity, recent studies utilizing intradermal vaccine delivery or incorporation of unique adjuvants suggest that mucosal immunity may be achieved by vaccination via non-mucosal routes. In this expert insight, we highlight emerging evidence from pre-clinical studies that warrant further mechanistic investigation to improve next-generation vaccines against mucosal pathogens, especially those with pandemic potential.

11.
Clin Exp Med ; 23(2): 519-527, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35076789

RESUMO

For over 40 years, the gold standard treatment for non-muscular invasive bladder cancer (NMIBC) has been repeated administration of Mycobacterium bovis bacille Calmette-Guerin (BCG). Upon administration, BCG initiates a cascade of immunological events that lead to the recruitment of immune cells to the bladder that eliminates NMIBC cells in a multi-mechanistic, yet incompletely defined manner. Despite its effectiveness, live BCG immunotherapy is often impacted by limited supply and availability and can cause rare but serious side effects. Bacterial extracellular vesicles (EV) are nanoparticles secreted by live bacteria. EVs are composed of multiple surface proteins, sugars, and lipid that can elicit cellular responses and host recognition similar to live bacteria. In this study, we sought to evaluate the cellular responses of epithelial bladder cancer cells (BCC) to BCG EVs and live BCG. We compared the effect of each treatment on BCC cytokine production, cellular viability and apoptosis. Our data suggest that BCG EVs are as effective as live BCG in eliciting cytokine responses and halting cancer cell growth by, in part, inducing apoptosis. These results indicate that BCG EVs warrant investigation as an alternative to live BCG for NMIBC immunotherapy.


Assuntos
Vesículas Extracelulares , Mycobacterium bovis , Neoplasias da Bexiga Urinária , Humanos , Vacina BCG/uso terapêutico , Neoplasias da Bexiga Urinária/terapia , Imunoterapia/métodos , Citocinas
12.
NPJ Vaccines ; 8(1): 80, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37258506

RESUMO

Although most pathogens infect the human body via mucosal surfaces, very few injectable vaccines can specifically target immune cells to these tissues where their effector functions would be most desirable. We have previously shown that certain adjuvants can program vaccine-specific helper T cells to migrate to the gut, even when the vaccine is delivered non-mucosally. It is not known whether this is true for antigen-specific B cell responses. Here we show that a single intradermal vaccination with the adjuvant double mutant heat-labile toxin (dmLT) induces a robust endogenous, vaccine-specific, isotype-switched B cell response. When the vaccine was intradermally boosted, we detected non-circulating vaccine-specific B cell responses in the lamina propria of the large intestines, Peyer's patches, and lungs. When compared to the TLR9 ligand adjuvant CpG, only dmLT was able to drive the establishment of isotype-switched resident B cells in these mucosal tissues, even when the dmLT-adjuvanted vaccine was administered non-mucosally. Further, we found that the transcription factor Batf3 was important for the full germinal center reaction, isotype switching, and Peyer's patch migration of these B cells. Collectively, these data indicate that specific adjuvants can promote mucosal homing and the establishment of activated, antigen-specific B cells in mucosal tissues, even when these adjuvants are delivered by a non-mucosal route. These findings could fundamentally change the way future vaccines are formulated and delivered.

13.
ACS Infect Dis ; 9(4): 952-965, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36961222

RESUMO

Here, we describe the continued synthetic molecular evolution of a lineage of host-compatible antimicrobial peptides (AMP) intended for the treatment of wounds infected with drug-resistant, biofilm-forming bacteria. The peptides tested are variants of an evolved AMP called d-amino acid CONsensus with Glycine Absent (d-CONGA), which has excellent antimicrobial activities in vitro and in vivo. In this newest generation of rational d-CONGA variants, we tested multiple sequence-structure-function hypotheses that had not been tested in previous generations. Many of the peptide variants have lower antibacterial activity against Gram-positive or Gram-negative pathogens, especially variants that have altered hydrophobicity, secondary structure potential, or spatial distribution of charged and hydrophobic residues. Thus, d-CONGA is generally well tuned for antimicrobial activity. However, we identified a variant, d-CONGA-Q7, with a polar glutamine inserted into the middle of the sequence, that has higher activity against both planktonic and biofilm-forming bacteria as well as lower cytotoxicity against human fibroblasts. Against clinical isolates of Klebsiella pneumoniae, innate resistance to d-CONGA was surprisingly common despite a lack of inducible resistance in Pseudomonas aeruginosa reported previously. Yet, these same isolates were susceptible to d-CONGA-Q7. d-CONGA-Q7 is much less vulnerable to AMP resistance in Gram-negative bacteria than its predecessor. Consistent with the spirit of synthetic molecular evolution, d-CONGA-Q7 achieved a critical gain-of-function and has a significantly better activity profile.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Humanos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Testes de Sensibilidade Microbiana , Bactérias , Biofilmes , Anti-Infecciosos/farmacologia
14.
J Neurovirol ; 18(3): 213-21, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22535448

RESUMO

HIV infection in the brain and the resultant encephalitis affect approximately one third of individuals infected with HIV, regardless of treatment with antiretroviral drugs. Microglia are the resident phagocytic cell type in the brain, serving as a "first responder" to neuroinvasion by pathogens. The early events of the microglial response to productively infected monocyte/macrophages entering the brain can best be investigated using in vitro techniques. We hypothesized that activation of microglia would be specific to the presence of simian immunodeficiency virus (SIV)-infected macrophages as opposed to responses to macrophages in general. Purified microglia were grown and stimulated with control or SIV-infected macrophages. After 6 h, aliquots of the supernatant were analyzed for 23 cytokines using Millipore nonhuman primate-specific kit. In parallel experiments, morphologic changes and cytokine expression by individual microglia were examined by immunofluorescence. Surprisingly, the presence of macrophages was more important to the microglial response rather than whether the macrophages were infected with SIV. None of the cytokines examined were unique to co-incubation with SIV-infected macrophages compared with control macrophages, or their supernatants. Media from SIV-infected macrophages, however, did induce secretion of higher levels of IL-6 and IL-8 than the other treatments. As resident macrophages in the brain, microglia would be expected to have a strong response to infiltrate innate immune cells such as monocyte/macrophages. This response is triggered by incubation with macrophages, irrespective of whether or not they are infected with SIV, indicating a rapid, generalized immune response when infiltrating macrophages entering the brain.


Assuntos
Citocinas/imunologia , Lobo Frontal/imunologia , Macrófagos/imunologia , Microglia/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Animais , Comunicação Celular , Movimento Celular , Técnicas de Cocultura , Meios de Cultivo Condicionados , Citocinas/biossíntese , Lobo Frontal/patologia , Lobo Frontal/virologia , Macaca mulatta , Macrófagos/patologia , Macrófagos/virologia , Microglia/patologia , Microglia/virologia , Cultura Primária de Células , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia
15.
J Surg Res ; 175(1): e35-42, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22261587

RESUMO

BACKGROUND: Biologic meshes have become increasingly popular for the repair of abdominal wall defects, especially in contaminated sites. The purpose of this study was to evaluate the histologic and biomechanical properties of biologic mesh in response to a bacterial encounter. MATERIAL AND METHODS: A rat model of Pseudomonas aeruginosa colonization and infection of subcutaneously implanted biologic mesh was used. Samples of biologic meshes [acellular human dermis (ADM) and porcine small intestine submucosa (SIS)] were inoculated with P. aeruginosa (10(5) or 10(9) cfu) or saline as a control prior to wound closure (n = 6 per group). After 10 or 20 d, the meshes were harvested. The recovered meshes were analyzed for histologic changes and bacterial recovery as well as the material strength properties. Statistical significance (P < 0.05) was determined using 1-way analysis of variance or Mann-Whitney test. RESULTS: ADM and SIS colonized with 10(9) cfu P. aeruginosa showed an increased inflammatory response with an associated decrease in neo-vascularization (P < 0.05) at 20 d post-implantation compared with controls. P. aeruginosa had no effect on the tensile strength of ADM, but the tensile strength and modulus of elasticity were reduced for SIS compared with controls at 20 d. CONCLUSION: Bacterial colonization of ADM and SIS with 10(9)cfu P. aeruginosa negatively effected neovascularization and cellular re-population of the material over time but only SIS showed alterations in their biomechanical properties in response to this gram-negative bacterial challenge.


Assuntos
Bioprótese/microbiologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa , Telas Cirúrgicas/microbiologia , Cicatrização/fisiologia , Animais , Fenômenos Biomecânicos , Colágeno , Modelos Animais de Doenças , Elasticidade , Inflamação/patologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/fisiopatologia , Mucosa Intestinal/transplante , Masculino , Neovascularização Fisiológica , Infecções por Pseudomonas/fisiopatologia , Ratos , Ratos Sprague-Dawley , Resistência à Tração
16.
Front Microbiol ; 13: 870104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35418967

RESUMO

The bacterium Pseudomonas aeruginosa (Pa) is ubiquitous in the environment and causes opportunistic infections in humans. Pa is increasingly becoming one of the most difficult to treat microorganisms due to its intrinsic and acquired resistance to multiple antibiotics. The World Health Organization estimates that at least 700,000 people die each year from drug resistant microbial infections and have listed Pa as one of three bacterial species for which there is the most critical need for the development of novel therapeutics. Pa is a common cause of bloodstream infections (BSI) and bacterial sepsis. With nearly 49 million sepsis cases and 11 million deaths worldwide, an effective vaccine against Pa could prevent the morbidity and mortality resulting from Pa BSI and lessen our dependence on antibiotics. We reviewed the current landscape of Pa vaccines in pre-clinical and clinical stages over the last two decades. It is readily apparent that Pa vaccine development efforts have been largely directed at the prevention of pulmonary infections, likely due to Pa's devastating impact on individuals with cystic fibrosis. However, the increase in nosocomial infections, BSI-related sepsis, and the emergence of widespread antibiotic resistance have converged as a major threat to global public health. In this perspective, we draw attention to potential Pa vaccine candidates and encourage a renewed effort for prophylactic vaccine development to prevent drug-resistant Pa BSI.

17.
Front Cell Infect Microbiol ; 12: 943346, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937684

RESUMO

Chronic respiratory infection (CRI) with Pseudomonas aeruginosa (Pa) presents many unique challenges that complicate treatment. One notable challenge is the hypermutator phenotype which is present in up to 60% of sampled CRI patient isolates. Hypermutation can be caused by deactivating mutations in DNA mismatch repair (MMR) genes including mutS, mutL, and uvrD. In vitro and in vivo studies have demonstrated hypermutator strains to be less virulent than wild-type Pa. However, patients colonized with hypermutators display poorer lung function and a higher incidence of treatment failure. Hypermutation and MMR-deficiency create increased genetic diversity and population heterogeneity due to elevated mutation rates. MMR-deficient strains demonstrate higher rates of mucoidy, a hallmark virulence determinant of Pa during CRI in cystic fibrosis patients. The mucoid phenotype results from simple sequence repeat mutations in the mucA gene made in the absence of functional MMR. Mutations in Pa are further increased in the absence of MMR, leading to microcolony biofilm formation, further lineage diversification, and population heterogeneity which enhance bacterial persistence and host immune evasion. Hypermutation facilitates the adaptation to the lung microenvironment, enabling survival among nutritional complexity and microaerobic or anaerobic conditions. Mutations in key acute-to-chronic virulence "switch" genes, such as retS, bfmS, and ampR, are also catalyzed by hypermutation. Consequently, strong positive selection for many loss-of-function pathoadaptive mutations is seen in hypermutators and enriched in genes such as lasR. This results in the characteristic loss of Pa acute infection virulence factors, including quorum sensing, flagellar motility, and type III secretion. Further study of the role of hypermutation on Pa chronic infection is needed to better inform treatment regimens against CRI with hypermutator strains.


Assuntos
Infecções por Pseudomonas , Infecções Respiratórias , Proteínas de Bactérias/genética , Humanos , Mutação , Fenótipo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Virulência/genética
18.
Research (Wash D C) ; 2022: 9769803, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928300

RESUMO

Identification of epitopes targeted following virus infection or vaccination can guide vaccine design and development of therapeutic interventions targeting functional sites, but can be laborious. Herein, we employed peptide microarrays to map linear peptide epitopes (LPEs) recognized following SARS-CoV-2 infection and vaccination. LPEs detected by nonhuman primate (NHP) and patient IgMs after SARS-CoV-2 infection extensively overlapped, localized to functionally important virus regions, and aligned with reported neutralizing antibody binding sites. Similar LPE overlap occurred after infection and vaccination, with LPE clusters specific to each stimulus, where strong and conserved LPEs mapping to sites known or likely to inhibit spike protein function. Vaccine-specific LPEs tended to map to sites known or likely to be affected by structural changes induced by the proline substitutions in the mRNA vaccine's S protein. Mapping LPEs to regions of known functional importance in this manner may accelerate vaccine evaluation and discovery of targets for site-specific therapeutic interventions.

19.
Infect Immun ; 79(12): 4876-92, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21947773

RESUMO

Interleukin-10 (IL-10) modulates inflammatory responses elicited in vitro and in vivo by Borrelia burgdorferi, the Lyme disease spirochete. How IL-10 modulates these inflammatory responses still remains elusive. We hypothesize that IL-10 inhibits effector functions of multiple genes induced by B. burgdorferi in macrophages to control concomitantly elicited inflammation. Because macrophages are essential in the initiation of inflammation, we used mouse J774 macrophages and live B. burgdorferi spirochetes as the model target cell and stimulant, respectively. First, we employed transcriptome profiling to identify genes that were induced by stimulation of cells with live spirochetes and that were perturbed by addition of IL-10 to spirochete cultures. Spirochetes significantly induced upregulation of 347 genes at both the 4-h and 24-h time points. IL-10 inhibited the expression levels, respectively, of 53 and 65 of the 4-h and 24-h genes, and potentiated, respectively, at 4 h and 24 h, 65 and 50 genes. Prominent among the novel identified IL-10-inhibited genes also validated by quantitative real-time PCR (qRT-PCR) were Toll-like receptor 1 (TLR1), TLR2, IRAK3, TRAF1, IRG1, PTGS2, MMP9, IFI44, IFIT1, and CD40. Proteome analysis using a multiplex enzyme-linked immunosorbent assay (ELISA) revealed the IL-10 modulation/and or potentiation of RANTES/CCL5, macrophage inflammatory protein 2 (MIP-2)/CXCL2, IP-10/CXCL10, MIP-1α/CCL3, granulocyte colony-stimulating factor (G-CSF)/CSF3, CXCL1, CXCL5, CCL2, CCL4, IL-6, tumor necrosis factor alpha (TNF-α), IL-1α, IL-1ß, gamma interferon (IFN-γ), and IL-9. Similar results were obtained using sonicated spirochetes or lipoprotein as stimulants. Our data show that IL-10 alters effectors induced by B. burgdorferi in macrophages to control concomitantly elicited inflammatory responses. Moreover, for the first time, this study provides global insight into potential mechanisms used by IL-10 to control Lyme disease inflammation.


Assuntos
Borrelia burgdorferi/fisiologia , Perfilação da Expressão Gênica , Interleucina-10/farmacologia , Doença de Lyme/metabolismo , Macrófagos/metabolismo , Animais , Borrelia burgdorferi/efeitos dos fármacos , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/prevenção & controle , Doença de Lyme/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Camundongos , Reação em Cadeia da Polimerase em Tempo Real
20.
Appl Environ Microbiol ; 77(4): 1221-30, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21169425

RESUMO

Assessing bacterial behavior in microgravity is important for risk assessment and prevention of infectious diseases during spaceflight missions. Furthermore, this research field allows the unveiling of novel connections between low-fluid-shear regions encountered by pathogens during their natural infection process and bacterial virulence. This study is the first to characterize the spaceflight-induced global transcriptional and proteomic responses of Pseudomonas aeruginosa, an opportunistic pathogen that is present in the space habitat. P. aeruginosa responded to spaceflight conditions through differential regulation of 167 genes and 28 proteins, with Hfq as a global transcriptional regulator. Since Hfq was also differentially regulated in spaceflight-grown Salmonella enterica serovar Typhimurium, Hfq represents the first spaceflight-induced regulator acting across bacterial species. The major P. aeruginosa virulence-related genes induced in spaceflight were the lecA and lecB lectin genes and the gene for rhamnosyltransferase (rhlA), which is involved in rhamnolipid production. The transcriptional response of spaceflight-grown P. aeruginosa was compared with our previous data for this organism grown in microgravity analogue conditions using the rotating wall vessel (RWV) bioreactor. Interesting similarities were observed, including, among others, similarities with regard to Hfq regulation and oxygen metabolism. While RWV-grown P. aeruginosa mainly induced genes involved in microaerophilic metabolism, P. aeruginosa cultured in spaceflight presumably adopted an anaerobic mode of growth, in which denitrification was most prominent. Whether the observed changes in pathogenesis-related gene expression in response to spaceflight culture could lead to an alteration of virulence in P. aeruginosa remains to be determined and will be important for infectious disease risk assessment and prevention, both during spaceflight missions and for the general public.


Assuntos
Fator Proteico 1 do Hospedeiro/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Voo Espacial , Ausência de Peso , Adesinas Bacterianas/genética , Proteínas de Bactérias/genética , Desnitrificação , Sistemas Ecológicos Fechados , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Hexosiltransferases/genética , Lectinas/genética , Dados de Sequência Molecular , Oxigênio/metabolismo , Proteômica , Pseudomonas aeruginosa/patogenicidade , Salmonella enterica/genética , Salmonella typhimurium/genética , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/metabolismo , Transcrição Gênica , Virulência/genética , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA